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To Crash or Not To Crash:

A quantitative look at the relationship between offensive rebounding and
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Abstract

Immediately following a missed shot an offensive player can choose to crash the boatds for an offensive rebound,
get back on defense, or hold their current position. In this paper, we use optical tracking data to develop novel
metrics to sumimarize a team’s strategy immediately following a shot. We evaluate each mettic using data from the
2011-2012 NBA season. Our results confirm that getting back on defense and neutralizing threats early in the
possession contribute to a defensive success. However, tendencies to get back eatly on defense after a missed shot
can reduce a team’s probability of getting an offensive rebound by more than half,

1 Introduction

The American General Geotrge 8. Patton had a simple philosophy of war, "When in doubt, attack." The 1st Duke
of Wellington had a more nuanced view. A great general, he said, should "know when to retreat, and to dare to do
it." When it comes to offensive rebounding in the NBA, some coaches take a Patton-like approach--they want their
players to attack the offensive boards at every opportunity. Other coaches emphasize the importance of retreating
to a strong defensive position. When the offense sends more playets towatd the basket when a shot is taken, that
team has a better chance of securing an offensive rebound [1]. But sending too many players in to rebound might
impede the ability of a teamn to get back quickly on defense. This paper provides steps toward understandmg and
quantifying the tradeotf between offensive rebounding and transition defense.

Figure 1 highlights a possession in a game between Boston and New Jersey. As soon as the ball is released the three
offensive players clesest to the basket decide to crash. In this instance Boston gets the offensive rebound. This clip
is somewhat unusual since more often than not Boston retreats after a shot goes up, readying their defense for the
next possession. The tradeoff between these two opposing strategies is complex. Current popular metrics often
quoted by analysts, such as offensive rebound rate and transition points allowed offet no insight into what strategic
choices influence a team’s petformance.

Figure 1: These frames are extracted from a game between the New Jersey Nets and the Boston Celtics
form March 209 2012 [2]. In the frame on the left we see a field goal attempt from the Celtics. The frame on
the right is taken 1 second after Paul Pierce releases the shot. From the time the shot was teleased three
players have moved closer to the basket. Playets don’t have much time to decide what they will do after a
shot is teleased, but what they do decide can have a significant impact on the outcome of the game.
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In this paper, we attempt to quantify this trade-off using data from the STATS SpottVU system [3], which contains
data from 233 games from the 2011-2012 season (including playoffs). This dataset contains all the {x,y} positions of
every player on the coutt and the {x;y,2} coordinates of the ball at 25 frames per second. We develop several new
metrics based on the positioning of teams after a missed shot. These metrics are shown to relate to outcome
(though in different ways), and may be used by teams to evaluate defensive (and offensive) strategies.

2 What Teams Gain by Crashing

Playet movetnent immediately following the release of 2 shot (as in
Figute 1) can have an impact on not enly who gets the rebound if the
shot is missed, but also the result of the next possession (if the other
team gets the defensive rebound). To test this hypothesis we consider all
missed field goals taken at least 15ft from the basket. Our final dataset
consists of 6,521 instances of missed jump shots. For each instance we
consider the {x,y} positions of evety offensive player on the court in
relation to the basket at the time the shot is released (the blue markers in
Figure 2) and at the time the rebound is secuted (the red markers in
Figure 2). We define reaction #ine as the total time from when the shot is
released to when the ball is rebounded. The mean reaction time in out
dataset was approximately 2.22s (standard deviation of 0.65 seconds).

Figure 2: We consider the movement
of offensive players immediately
following a missed jump shot. The
red matkers indicate the position of
playeis at the time the ball is released.
The blue markers indicate their
position at the time of the rebound.

To determine a player’s intention to get the offensive rebound it is not
enough to simply consider the movement of players in relation to the
basket. Some playets who ate close to the basket may actually move
slightly amay from the basket in order to gain a better position. Players far
away from the basket may not even consider crashing since the
probability of getting the tebound is so low. We charactetize the
positioning and movement of players during the reaction time using the
following four metrics:

e Number of Players Tnside (PT) — the number of playets positioned 8 feet from the basket when the shot is
released

°  Numbers of Players Ontside (PO) — the number of players positioned more than 33 feet from the basket when
the shot is released

o Number of Neutral Players who Crash (NPC) —the number of players initially positioned between 8 and 33 feet
from the basket who move at least 5 feet toward the basket

©  Nuwhber of Neutral Players who Retreat (NPR) — the number of players initially positioned between 8 and 33
feet from the basket who move at least 5 feet away from the basket

In addition we define two summary statistics:
o Crash Index (CI) = PI+NPC
o Retreat Index (RT) = PO+NPR

Figure 2 is an example of Golden State’s offensive positioning and movement duting the reaction time after a jump
shot. In this instance Golden State has PI=1, NPC=1, NPR=3 and PO=0, and was successful in securing the
offensive rebound.

We begin by considering how these metrics relate to the probability of getting the offensive rebound. Considering
all 6,521 possessions, we vary the NPC from 0 to 3 and the PT from 0 to 2. There were a few cases where CI=4, but
these were removed since the number of instances was so low. All other combinations had at least 100 examples.
Figute 3 (a) shows that the probability of getting the offensive rebound is greatest when PT=2 and NPC=1.
Unsurprisingly the offensive rebounding rate increases as PT and NPC increase. Figure 3(b) shows the probability of
getting the offensive rebound is greatest when no one retreats and 3 players crash. Itis important to note that this
figure shows an asseciation between the numbet of players who crash and the probability of getting an offensive
rebound. It does not show that crashing the boards eaner offensive rebounds. It is possible that more players crash
when it appears that getting an offensive rebound is there for the taking
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Figure 3: The probability of getting an offensive rebound as a function of (a) NPC & PI and (b) CI & RI.
As you increase PI and NPC the probability increases, however increasing RI always results in a lower
probability.

For each team we consider all possessions where a missed jump shot occurs, and calculate the fraction of time
CI>RI (more players crash than retreat), and the offensive rebounding rate. We believe that the fraction of time
CI>RI is indicative of the relative importance a team places on offensive rebounding or transition defense. We plot
the results of this analysis in Figure 4. Note that the SportVU system is not installed in all arenas. Therefore, there
are some teams for which we have little data. To avoid confusing the signal with the noise we do not plot results for
teams for which we have fewer than 150 examples of a missed jump shot. Figure 4 indicates a strong association
between CI>RI and offensive rebounding.
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Figure 4: Considering possessions grouped by teams, we again note a relationship between CI & RI and
the offensive rebounding rate (for missed jump shots in our data). The number of possessions we have for
each team varies from 151 to 622, here the size of the markers indicates the number of possessions,

Moving toward the basket immediately following a missed shot seems to increase a teatn’s probability of getting the
offensive rebound, but still even the best offensive tebounding petcentage is much less than 50%. Ie., following a
missed jump shot, a defensive rebound by the other team is always mote likely. The data shows that most of the
time a team’s R1 is greater than its CI (42% of the ime RI>CI, 32% of time CI>RI). Does sending players back
carly affect the result of the next defensive possession?

To address this question we consider all missed shots that result in a defensive rebound by the other team and the
outcome of the next possession. We assign a 0 to possessions that result in either a made shot or an attempted free
throw, and +1 to the other possessions. Here, 2 positive outcome is good for the team that just missed a field goal.
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Figure 5: The positive effect of tetreating immediately following the release of a shot (assuming the
other team gets the defensive rebound) is transient. L
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For each possession we calculated the RI of the offensive team, and grouped possessions into high and low R1
(upper quartile and lower quattile). We measute the probability of a positive event occurring in both groups. Figure
5 shows the impact of a team’s movement immediately following the release of a shot makes in terms of outcome
(assuming a missed offensive rebound). For each bin we calculate the odds ratio (Eg. 1).

(Qdds Ratio = Puppcr(+1)*P]o\vcr(o)/(PIU\\‘E:(+1)*Puppcr(o) Eq- 1

As the length of the possession increases, the odds ratio decreases. Figure 5 implies that movement away from the
basket immediately following the release of the shot has the greatest impact on short possessions. Le., the effect is
transient. But what is the team giving up in return for limiting transition baskets?

Again we consider the movement of offensive players immediately following a missed shot, but in addition we
consider the outcome of what happens next. If an offensive rebound occuts, any points scored during this
possession count as a gain. If a defensive rebound occurs, any points scored on the next possession count as a loss.
By averaging over all possessions we can compute the net gain of all missed shots (Eq. 2)

Net Gain = P(Offensive Rebound)*Avg. Pts. For — P(Defensive Rebound)*Avg. Pts. Against Eq. 2

Table 1 shows the average net gain (points/possession) as a function of CI and RI. In all cases, the net gain is
negative, i.c., missed shots are bad. On average a missed shot results in -0.549 poeints per possession.

Table 1: Net gain of missed shot broken down by CI and RI. Offensive rebounding rates are given in
patentheses. We consider only scenarios for which we have at least 100 possessions. The shaded atea
tepresents the most probable scenarios (over 500 instances each).

Crash Index

-0.83 (0.21) -0.49 (0.27) -0.22 (0.34) -0.12 (0.40)
5 -0.69 (0.15) -0.53 (0.21) -0.45 (0.29) -0.09 (0.36)
29 -0.76 (0.11) -0.62 (0.19) -0.46 (0.27) -0.36 (0.31)
=R -0.97 (0.08) -0.85 (0.15) -0.40 (0.28)
-1.08 (0.04) -0.50 (0.12)

Notice that it appears that a team can mitigate the effect of missed jump shots by sending more players to crash.
Considering only the most ptobable scenatios (the shaded region in Table 1) we can increase the net gain from -0.62
(CI=1 & RI=2) to -0.45 (CI=2 & RI=1) just by swapping the role of a single player. This change results in a net gain
of 0.17 pts/possession. If a team misses on average 25 jump shots per game this could translate to a possible gain of
4 points per game.

We investigated which teams were doing this already, by considering the ratio of the number of times teams found
themselves in each scenatio. We plot this ratio vs. the average net gain per team in Figure 6. Here we consider only
teams for which we had at least 100 possessions (that meet our inclusion critetia) worth of data,

Admittedly this analysis does not account for the personnel on a team. For examnple, some teams tnay not have two
good rebounders. In such a case sending two players to crash and one player to retreat might not have the same
expected gain as it does when we consider aggregate data from all teams. This is an opportunity for further analysis.

Stll our results suggest that in general focusing on the offensive rebound immediately after the shot goes up seems
to trump the gain a team gets with a head start on getting back. In the next sections we investigate how a team’s
movement affer the ball is rebounded impacts the outcome of a possession immediately following a missed offensive
rebound.
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Figure 6: Washington and Houston alteady appear to be doing the optimal thing after a missed jump
shot (at least in the games for which we had data), while Toronto and Golden State could improve their
strategy.

3 Early Threat Neutralization

(a). Good threat neutralization (b). Bad threat neutralization

Figute 7: Tllustration of threat neutralization, where offense is marked with ‘0’ and defense is marked
with %’. Player 10 of the offensive team has just come within his threatening distance (red arc). (a)
shows an example of good neutralization, where the distance between Player 10 and the closest
defender (Player 5) is small. (b) shows an example of bad neutralization.

The previous measures do not quantify how well a team prevents its opponents from entering a threatening
offensive position after a defensive rebound. Simply retreating to the defensive end of the court is not sufficient.
We developed the mazimum distance to eatly threats (MDET) score to measure this element of defense. Figure 7
illustrates the intuition of the MDET score. The first time an offensive player is within a threatening distance to the
basket in the first five seconds of his team’s possession, we measure his distance (in feet) to the closest defending
player. We compute a distance for each offensive player that becomes a threat duting the possession and use the
maximum of these distances as the MDET score. The maximum distance represents the most “open” player during
the early portion of the possession. Note that a lower MDET scote indicates better neutralization.

1o Offensive threat range varies by player. A center like Dwight Howard should
be considered an offensive threat at a much closer distance to the basket than
a 3-point shooter like Ray Allen. Therefore we set an offensive player’s threat
range based on the distribution of his shot distances in the data. We found
that using the 75% percentile of a playet’s shot distance distribution works
well. Figure 8 plots the offensive threat ranges for all the players in the data.
As expected, this distribution is somewhat bimodal, with high density around
15 and 23 ft.
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We compate MDET with defensive outcome by considering all continuous
possessions (i.c. possessions without a stoppage in the middle) following a
defensive rebound. During our analysis we found that the MDET' did not
have a significant effect on the outcome of possessions greater than 15
seconds in length. This is similar to the trend we saw with RI and outcome;

Figure 8: Distribution of
offensive threat range across all
playegs. A significant number of
players are not considered a

threat outside of 16 fi. . e . . . .
the effect appears to be transient. Thus in following analysis we consider only

possessions less than 15 seconds. This includes possessions that end in free throws since a poor defensive effort can
lead to defensive fouls. In total, we had 10,915 possessions. We computed the MDET score for each defensive
possession and recorded a binary outcome (1 = opponent did not score, 0 = opponent scored or got to the free
thtow line). Figute 9 plots the MDET distribution for each cutcome. Using the Kolmogorov-Smirnov test, we
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found that the two distributions were significantly different (p < 0.01). Looking at the distributions, we see that
outcome 1’s distribution is shifted toward lower MDET values than outcome 0. The mean MDET score for
outcome 1 was 9.05 ft and the mean score for outcome 0 was 9.63 ft.
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Figure 9: MDET distributions for outcomes Figure 10: Points allowed per possession vs.
0 and 1. MDET

These results are consistent with the intuition that better threat neutralization can prevent transition baskets on
defense. Figure 10 displays the number of points allowed pet possession versus MDET. An increase of MDET
from 6 to 12, for example, leads to roughly 0.06 more points allowed per possession after a defensive rebound.
Based on the dataset, there are about 25 possessions for 2 team pet game that are continuous and follow a defensive
rebound. It follows that a difference of 0.06 points per possession could change an opponent’s score by 1.5 points

4 Early Threat Neutralization vs. Crashing/Retreating

Finally, we investigate how eatly threat neutralization relates to offensive

tebound crashing, We hypothesized that having more players crash the

boatds will worsen threat neutralization petformance since a player that
crashes must run a longer distance to get back on defense. To test this
hypothesis we considered all possessions in which a team missed a shot
and did not get the offensive rebound and for which the following
possession lasted at most 15 seconds. We then compare how the number
of players crashing and retreating relates to MDET. Figure 11 shows that
MDET tends to increase with an increase in RI and decrease with an

=
O~y

increase in CI. These tesults are in agreement with out hypothesis that B 2 3 4

there is a tradeoff between offensive rebounding and getting back on Pollayseatinae

defense. Figure 11: Comparison of CI and RI to
MDET

5 Conclusion

In this paper we study optical tracking data in an attempt to quantify the tradeoff of going for the offensive rebound
vs. getting ready for the transition to defense.

We analyzed the relationship between the movements of players when a shot is in the air and a team’s ability to
garner offensive rebounds. We defined two new metrics the Crash Index (CI) and Retreat Index (RI) that quantify
the extent to which teams pursue an offensive rebound or ready themselves for transition defense. We also looked
at what the offense does after the other team secutes the defensive rebound. In deing so we introduced another
metric, the maximum distance to eatly threats (MDET), designed to measure the effectiveness with which players
defend duting the transition petiod. We showed that there is a strong association between each of these three
metrics and points/possession.

In conclusion, out results suggest that focusing on the offensive rebound immediately after the shot goes up seems
to trump the gain a team gets with a head start on getting back. In the case of a defensive rebound by the other team
eatly threat neutralization (as opposed to merely getting back eatly) can help limit the negative impact of transition
baskets. The generalizability of these conclusions is limited by the data. For some teamns we lacked data. Moreover,
there are many factors we have yet to consider, ¢.g. the positioning of the defensive players, the game situation and
especially the personnel on the floct,
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Acceleration in the NBA:
Towards an Algorithmic Taxonomy of Basketball Plays

Philip Maymin
NYU-Polytechnic Institute
Brooklyn, NY 11201

Email: philip(@maymin.com

Abstract

I filter the 25-frames-pet-second STATS/SportVu optical tracking data of 233 regular and post season
2011-2012 NBA games for half-court situations that begin when the last player crosses half-court and
end when possession changes, resulting in a universe of more than 30,000 basketball plays, ot about 130
per game. To categorize the plays algorithmically, I desciibe the requirements a suitable dynamic
language must have to be both more concise and more precise than standard X’s and O’s chalk
diagrams. The language specifies for each player their initial starting spots, trajectories, and timing, with
iteration as needed. A key component is acceleration. To determine optimal starting spots, | compute
burst locations on the court where players tend to accelerate or decelerate more than usual. Cluster
analysis on those burst points compared to all points reveals a difference in which areas of the court see
more intense action. The primary burst clustets appear to be the paint, the top of the key, and the
extended elbow and wing area. I document the most frequently accelerating players, positions, and
teams, as well as the likellhoods of acceleration and co-acceleration during a set play and other
components intended to collectively lead to an algorithmic taxonomy.

1 Introduction

Basketball coaches preach and teach execution but objectively measuring execution, let alone estimating the
contribution of execution on winning, has eluded analysis. Part of the problem is the language describing the desired
execution. Basketball plays ate routinely drawn up on chalkboards with standard static graphical notation, but the
precise timing is often cxplained only orally to the huddled players. Here T introduce a dynamic algorithmic
approach to concisely encode theoretical basketball plays and I describe its key characteristics. Important inputs to
the language are the frequencies and locations of player acceleration.

1 analyze optical tracking data on the 25-frames-pet-second positional data of 233 regular season and post season
2011-2012 NBA games for half court situations that begin when the last player crosses the half-court line and end
when the offense no longer has possession. This subset, which by construction excludes both fast and secondary
breaks, is ideal for analyzing set plays.

I document the teams, positions, and players in the dataset who exhibit the most and least frequent acceleration
both on offense and on defense. Further, I evaluate the incidence of co-acceleration when multiple players
experience bursts neatly simultaneously. T also determine the primary locations of hursts, compare and contrast
them with the primaty locations among inertial states, and evaluate the optimal number of such clusters. In addition,
I provide new graphic tools, both static and dynamic, to ease analysts of these important issues. Taken together,
these results build a roadmap towards an algorithmic taxonomy of basketball set plays.

Past research on optical tracking data in basketball includes [1], [2], and [3]. Acceleration in basketball has been
studied from a physiological perspective, c.f. [4] in which the authors found that college basketball players were
superior in terms of acceleration to non-athletes, but to my knowledge this is the first work exploring acceleration
from optical data and its implications for an algorithmic approach to categorizing halfcourt set plays.

2 Data

The three-dimensional SportVu optical tracking data from STATS LLC assigns to each player on the coutt an
otrdered (x, y) paitr representing the position of their center of mass on a regulation 94 feet by 50 feet NBA coutrt,
and assigns to the ball an additional z coordinate specifying its height above the ground. These coordinates are
recorded 25 times per second.
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In addition, event identification information is automatically assigned to frames satisfying certain criteria such as
dribbles, field goal attempts, and the like.

The data set covers 233 regular-season and post-season games during the lockout-shortened 2011-2012 season. Due
to differential adoption, these games are skewed towatrds the teams that installed the required technology. Figure 1

shows the breakdown of home games for which the data was available.

Figure 1: Home Games in Sample, by Team Figure 2: Cumulative Histogram of the Number of Plays per Player
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I filter the sequences of these coordinates within games to create subsequences of halfcourt set plays, defined and
implemented as follows. A halfcourt set play begins when all ten players ate on the same side of the court, the
opposite side from the previously recorded set play, and the ball is inbounds, within 20 feet of the halfcourt line, and
nearest to one of the offensive players. The set play ends when the difference in time from the previous snapshot is
more than 1/25 of a second (for example, a timeout has been called or the quarter has ended), when any player
appears in the back court, or when the ball is neatest to a defensive player.

This definition is intended to captute choreographed set plays rather than improvised fast breaks or secondary
breaks; in other words, possessions whete each player’s movements are the result of intentional practice. To focus
on halfcourt set plays, out-of-bonds set plays are excluded, except for situations where the ball is thrown back
inbounds to near halfcourt, at which point the definition above obtains and a presumptive regular set play can run.

The data set reduces to a universe of 30,950 plays lasting on average 180 frames each, or about 7 seconds. The data
set includes location information for 10 players as well as the baskethall, comprising more than 60 million
coordinates in total. Some of the 456 distinct players are involved in more plays than others, because their team has
mote home games in the sample or because they have mote playing time. Figure 2 shows the cumulative histogram
of the number of plays each player is involved with in our universe. About three quarters of the players participate in
at least one hundred distinct plays.

3 Methodology

Acceleration is computed as the second difference of the Euclidean distances between sequential moving average
positions of a player on the coutt, divided by the standard gravity g = 32.174 ft/s? , multiplied by 625 = 252 because
the frames in the optical data are 1/25 of a second apart, and multiplied by 10 to express the acceleration in units of
deci-g’s, whete 1 dg = 0.1 g is one-tenth of the standard acceleration of gravity g.

The window for the moving average, used to smooth the data for better accuracy in measuring the acceleration, is
five. Finally, the most extreme acceletations ate clipped because they are likely the result of random noise.

Specifically, the first smoothed position in a play for a particular player is calculated as the average of raw position
numbers one through five for the player; the second position is the average of taw position numbers two through
six; and so on. The acceleration is computed as the second difference, so the first acceleration is the second
difference between the third and the first smoothed positions. Thus, it is the second difference between the average
of raw positions three through seven and one through five.
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In short, the computation for a single acceleration number requires eight frames from the optical data. While this
may seem like a lot, it actually tepresents only 8 * 40 ms = 320 ms, which is literally in the blink of an eye: the
experimentally measured blink duration is 334 £ 67 ms [5].

Bursts of high acceleration are rare. The table at the right of Figure 3 shows the conditional and unconditional
frequency of occurtence as a function of the amount of acceleration. Acceleration is rare, and becomes rarer still for
greater acceleration. Note that computed accelerations in excess of 7 dg, comprising less than one percent of the
total, wete clipped to 7 dg.

Figure 3 shows the frequency of acceleration on offense by team, with teams sorted in increasing order by their
inertial proportion. The width of the bars represents the amount of data available for that team in our sample. The
Houston Rockets spent the least time accelerating; the Boston Celtics the most. The corresponding team graph for
defensive acceleration by team (not shown) has two substantive differences: the Milwaukee Bucks were even more
inertial on defense than on offense, while the San Antonio Spurs moved up from the bottom into the middle of the
pack.

Figure 3: Frequency of Offensive Acceleration by Team
(Bar widths correspond to amount of data available in sample)
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Table 1: Most and Least Frequent Accelerators
per Position (Percent of Time > 1 dg)

Figure 4: Frequency of Offensive Acceleration by Position
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Figure 4 shows the frequency of acceleration on offense by position, with positions sorted by average height of
players at that position. Centers have more bursts than guards, partially because they are more likely to set picks.
Even among forwards and centers, bigger players tend to exhibit more extreme accelerations. Not shown are
accelerations less than 1 dg in absolute magnitude; thus, point guards are not accelerating, 1.e. inertial, 81 percent of
the time while centers are inertial only 72 percent of the time. Note that inertial players are not necessarily standstill,
they merely have constant velocity. The cottesponding graph for defensive acceleration by position (not shown)
does not substantially differ.

Table 1 lists the players with the highest and the lowest frequency of accelerating at least 1 dg while on offense (in
other words, those with the lowest frequency are the ones with the highest inertia). The table would look somewhat
different for different thresholds of acceleration, e.g. if restricting only to accelerations greater than 3 dg instead of
1 dg, but the top 10 names in each categoty tend to be relatively stable. Further, essentially the same names appear
on the corresponding defensive table (not shown): players seem to accelerate, or not, based on who they are, not
based on whom they are guarding,

The spatial distribution of all players differs markedly from accelerating players. Figure 5 displays the three-
dimensional histogram of halfcourt player locations for a random subsample of all players, and for a random
subsample of players at times when they ate accelerating or decelerating at a magnitude of 5 dg or greater. Random
subsamples were used to facilitate display: the eatire universe of halfcourt set plays contains neatly 30 million
offensive player positions.

Figure 3: Histogram of Positions of All Players and Accelerating Players

All Locations Burst Locations
{Acceleration = 0 dg} {Acceleration = 5 dg)

A cluster analysis further highlights the differences while also suggesting common burst ateas. Figure ¢ shows these
results. Note the differences between the left-hand sides and right-hand sides of each halfcoutt. As with Figure 5,
the corner three is a popular location, albeit not one with much acceleration. Among burst points, the three primary
clusters appear to be the paint, the top of the key, and to a lesset extent, the combined area of the extended elbows
and wings. Extending to five clusters sepatates out the elbow and the corner wings as additional areas, but do not
appeat to be as well demarcated as the three clusters. Thus, we are justified in treating the three cluster graph as an
appropriate model for burst points, which will become starting points in our language.
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Figure 4: Cluster Analysis of Positions of All Players and Accelerating Players

All Loeations - (3 clusters). - Bursts (= 5 dg) All Locations - (5 clusters), - Bursts (= 5 dg)

4 Play Language and Specification

Bursts of extreme acceleration tend to happen in the paint, at the top of the key, or in the extended clbow and wing
areas. With each area on the left and on the right of the coutt, there are six possible starting and ending spots for
player trajectories:

1) LP and RP: Left Paint and Right Paint
2) LK and RK: Left Key and Right Key
3) LW and RW: Left Wing and Right Wing

In principle, player trajectoties may happen simultaneously or after previous trajectoties ate finished. Based on the
standard “X’s and O’s” graphical notation that does not specify an order for trajectories, it indeed appears as if all
movements happen simultaneously. In practice, we can explore how often burst points happen at the same time.

How often do multiple players accelerate simultaneously? If by “simultaneously” we mean the exact same frame
(1/25 of a second), then the answet is virtually never. But if by “simultaneously” we mean “within one second of
each other,” then we can count the number of times within all rolling 25-frame subperiods that no players, exactly 1
player, exactly 2 players, exactly 3 players, exactly 4 playets, or all 5 players were accelerating.

Figure 5: Proportions of Co-Accelerating Players

Acceleration = 1dg  Acceleration = 2dg  Acceleration = 3dg  Acceleration = 4 dg

w Zero plavers

n Exactly one player
o Exactly 2 players
o Exactly 3 players
0 Exactly 4 players
i All 5 players

Figure 7 shows the pie chatts of these counts for acceleration thresholds of 1 dg, 2 dg, 3 dg, and 4 dg. The
likelihood of multiple players acceletating or decelerating at a magnitude of at least 1 dg in any given one-second
interval is nearly 100 percent: in other wotds, mild acceleration is the norm for most players most of the time. The
story changes at more extreme bursts, however. The co-acceleration likelthood drops to about 75 percent for 2 dg,
50 percent for 3 dg, and 25 percent for 4 dg.
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Tt may be useful and simplifying to assume that no player begins a new trajectory while another player is in the
middle of his trajectory. This is a relatively non-constricting assumption because trajectories may be broken up into
patts, e.g. a player crossing the court from one wing to the other may, if necessary, be modeled as running first to
the nearest painted area, then to the other, and then finally to the opposite wing,

Therefore, the state of a play at any given time requites noting for each player which burst cluster they are currently
in and which one they are aiming towards, If they are not accelerating, then they may be said to aiming to the same
cluster they are cutrently in. Finally, the basketball itself needs to be modeled as well; because we also need to know
only its current location and destination, it can be treated as a sixth player on the court,

An example may help illustrate the approach. Figure 8 shows the snapshot from a video examination of the final
assisted field goal of the Thunder against the Spurs in Game 6 of the 2012 Western Conference Finals. The play
started with a litfle under two minutes remaining as James Harden (#13) diibbled over halfcourt, defended by Manu
Ginobili (#20). The snapshot in Figure 8 occurs about two-thirds of the way through the play, at a time after
Harden has passed the ball to Russell Westbrook {#0) but before Westbrook has caught it.

Note the five individual offensive trajectories. Thabo Sefolosha (#2) exhibits essentially no acceleration or velocity
in RW. Kevin Durant (#35) accelerates from LK to LP then to LW, Harden accelerates from RIK to RW though he
doesn’t quite reach it before the play ends. (However his acceleration is nevertheless important as it helps draw
Ginobili away from the action.) Serge Ibaka (#9) has the most complicated route and the most amount of screens,
accelerating from LP to RP, then to RIS, then finally to LK, where his final pick frees up Westbrook to take and
make the jumper and extend the Thundet’s lead to four points, essentially sealing their victory in the game and the
series. Note also that Westbrool’s acceleration towards the end of the play coincides with Ibaka’s; similarly,
Harden’s acceleration statting at the snapshot shown also coincides with Ihaka’s.

Figure 6: 2012 Western Conference Finals, Game 6, OKC@SA, Q4 1:49 — 1:36
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5 Conclusions

Calculating and analyzing the accelerations of each offensive and defensive player in each halfeourt set from optical
tracking data, along with novel static and dynamic visualizations, helps shed light on the rare but critical bursts that
help define basketball plays and suggests a road towards an algorithmic description and ultimately a taxonomy of
plays. Iuture research directions may include attempting to predict future accelerations from past data alone,
implementation of a tool to help advance scouts categorize plays, and exploring the relationships between
acceleration and co-acceleration on field goal percentage, spacing, and execution variability.
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Abstract

An important problem facing a basketball team is determining the right proportion of 2 and 3 point
shots to take. With many possessions remaining, a team should maximize points—a 3-pointer is simply
worth 1.5 2-pointers. 3-point attempts have roughly double the pershot variance as 2-point attempts,
but a team should be “risk neutral.” As time remaining decreases, the trailing team should place an
increasingly positive value on risk; the opposite holds for the leading team. Our game theoretic analysis
yields a testable optimality condition: 3-point success rate must fall relative to 2-point success rate when
ateam’s preference for risk increases. Using four years of play-by-play data, we find strong evidence this
condition holds for the trailing team only. As a lead decreases, the leading team should become more
risk-neutral, but teams in this circumstance actually tighten up and become more risk averse, contrary
to what their risk preferences ought to be to maximize the chance of winning the game. We also show
that if the offense shoots more 3s as it becomes risk-loving this implies the attack can be varied more
readily than the defensive adjustment. 3-point usage does increase with the trail team’s preference for
risk, but actually falls for the leading team. Teams get it right when losing and wrong when winning,
We also find a strong motivating effect of losing—the trailing teams displays an overall boost in efficiency
for both shot types.
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1 Introduction

In order to optimize, a basketball team must determine the right proportion of 2 and 3 point shots to take. In this
paper we study how NBA teams solve this problem. The trade-off between 2’s and 3’s dcpends critically on the score
margin and the time-remaining in the game. Early in the game, a team should maximize pomts per pos:scssmn—a 3
pointer is simply worth 1.5 2-pointers. Since 3-pointers have about double the per-shot variance in point outcomes
as 2-pointers, this implies a team should be “risk neutral” in these situations. Moving towards the end of the
game changes this trade-off. With a relatively small number future opportunities, the trailing team should place an
increasingly positive value on risky 3-point opportunities because they need a large swing in points to catch up;
conversely the leading team should place a negative value on risk, favoring predictable scoring opportunities. Using
detailed play-by-play data for six years of NBA games, we empirically quantify the true value of 3-pointers relative
to 2-pointers as a function of score margin and time remaining. We do so by calculating the impact 2 made shot of
cach type has on the chance the team wins the game for all the game states in our sample. It is not uncommon for
a made 3-pointer to be worth as much as 1.g and as little as 1.2 times the “win value” of a made 2-pointer.

We model a team’s choice of the proportion of shots between 2 and 3-pointers using the tools of game theory.
Solving the model gives the optimal mix of 2’s and 3’s. If we assume the defense cannot adjust, then when the
offense’s preference for risk increases, optimality implies it shoots more 3-pointers, 3-pointer efficiency falls, 2-
pointer efficiency rises and the win value of 3’s rises. The model makes clear that even in the risk-neutral setting,
optimal shot selection does not imply that 2 and 3 pointers offer the same average points per attempt (average
efficiency).

We extend the model by allowing for the defense to adjust the allocation of scarce defensive attention between
two and three-point defense. An increasing preference for risky 3-pointers by the offense is associated with an
increase in the defense’s incentive to guard against them. Allowing for a flexible class of defensive responses, we
show that 3-point efficiency should be inversely correlated with a team’s preference for risk—as a team becomes
more risk loving, optimal shot selection implies that 3-point percentage must go down. Our final extension allows
for a direct motivating effect of trailing; in this case the key prediction is the 3-point percentage must fall relative to
2-point percentage. The defensive adjustment model shows that the offense shoots more 3’s when their preference
for risk goes up only if the offense’s ability to vary the“attack” exceeds the defense’s ability to adjust.

We empirically test these predictions using four seasons of NBA play-by-play data. We allow for different model
estimates for each team-season and condition non-parametrically on both the offensive and defensive s-man lineup
to control for potential biases induced by substitution. Consistent with optimal shot selection, the trailing team
exhibits strong statistical evidence (£ = 8.28) that the point value of 3’s falls relative to 2’s as the offense’s preference
for risk increases. The trailing team also shoots more 3°s. In stark contrast, the leading team significantly violates
our key optimality proposition. Leading teams shoot fewer 3’s as their preference for risk increases and these 3’s
have bigher point value. As a lead decreases, the leading team should become more risk-neutral, but instead tighten
up and actually become more risk averse, contrary to what their risk preferences ought to be to maximize the
chance of winning the game.

Interestingly, we also find a large motivating effect of being behind (also discussed in our related paper [4])—for
a given offensive and defensive line-up, the trailing team displays an increase in efficiency for both 2 and 3-pointers.
This effect is similar in spirit to the findings of Pope and Berger (2011) [1] that a team trailing by r-point at
halftime wins slightly more often than the team leading by 1-point. The extra motivation of being behind has
ties to Kahneman and Tversky (1979)’s theory of “loss aversion”—the principle that people are more motivated to
“remove losses” than “seek gains™ [g]." In the context of the NBA, our results indicate that these sort of motivational
links do not depend on a halftime speech, tactical adjustments or line-up changes. Whether this effect is driven by
the leading team’s complacency or the trailing team’s motivation (or both) is not a question our data can speak to,
but the net effect is clear.

The loss-aversion finding combined with the suboptimal shot selection of leading teams helps explain why teams
tend to stage more comebacks than we’d otherwise expect. Since games tend to get close late, clutch moments are

'Rick and Loewenstein (200g) [6] also provide laboratory evidence in favor of this type of “motivational loss aversion.”
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relatively frequent. We show that for an average team it’s harder to score in clutch moments, but very good offenses
actually do better in the clutch and bad defenses get worse. Taken together, this means good teams have an even
greater advantage when the chips are down.

2 Quantifying a Team’s Objective Function

A team’s goal is to win the game. Accordingly, we are interested in estimating the mathematical function that gives
the “win value” of a given action. “Win value” refers to the impact the action has on the probability a team wins the
game. The three most important factors that determine the win value of an action at a given game state, especially
late in the game, are the score margin, time remaining and possession of the ball. The increase in win probability of
adding 2 or 3 points to the team’s current score are denoted W V3 and W Vs respectively. The most straightforward
estimation approach for these quantities is to take a large number of games at a given game state X and compare
the probability of winning at X to a “ncarby” state X’. For example, natural variation in actions taken at X give
us some cases where a shot was missed, some where a 2-pointer was made and some where a 3-pointer was made.
Intuitively, comparing the frequency which a team wins after these outcomes gives us the value these actions.

We define p(X) as the probability a team wins the game in state X. Econometrically we have two options to
calculate this quantity. The first method is “non-parametric”—it relies on local averages as described in the above
paragraph. The second is the “parametric” procedure developed in Goldman and Rao (2012) [3]. We describe it here
in the Appendix for completeness. This approach conditions on team quality, home court and game-state using
a Probit regression. Appendix Figure 1 shows that both methods yield very similar projections. Given the lower
noise in the parametric estimates (smoother function, Panel 1), our analysis will proceed using those estimates.

The relationship between the win value of 3’s and 2’s can be represented by the parameter o defined as:

WV -
Wy ;

a defines the degree to which 3-pointer win value diverges from 1.5 2-pointers. We refer to standard point values
as “nominal values.” In a most game situations, especially in the first half, scoring 3 points on a given possession
is worth very close to 1.5 times scoring 2 points. When o > 1.5, the win value of a 3-pointer exceeds it’s nominal
value. This occurs for the trailing team, especially late in the game. The effect can be seen in the convexity in the
trailing region of Appendix Figure 1. The reason is that the trailing team needs a relatively large swing in points to
catch-up—a higher variability shot is worth more because it increases the chance of this large swing. The opposite
is true for the leading team (which has o < 1.5)—here a 3-pointer is worth relatively less than usual since the team
should be risk-averse.

In Figure 1 Panel 1 we plot a as function of game state (margin, time remaining) for even strength teams on a
neutral court over the first 3 quarters (Panel 1) and the fourth quarter (Panel 2, note the change in y-axis scale). In
the first half o is always close to 1.5. In the third quarter we see more variation; a: is between 1.4 and 1.6 provided
the margin is less than 11 points. In the 4th quarter, « varies widely. With fewer possessions remaining, the trailing
(leading) team’s preference for risk increases (decreases) dramatically. *

3 Modeling a Team’s Shot Allocation Problem

We express a team’s optimization problem as a function of a, solving gives the optimal mix of 2 and 3-pointers
for each game situation. We will employ a concept in basketball analysis called the “usage curve” [s, 7, 2]. The

2 Is a natural proxy for a team’s preference for risk because it maps directly to the relative preferences over potential outcomes. Consider
a case where p3 = 0.50 and ps = 0.33. In this case there is an expected nominal value of one point for reach shot, The variance in the return
of a 3-point attempt is 32.33 % .66 = 1.96 and for the two-pointer 22.5% = 1. Suppose & = 1.7. This means the expected utility (expected
real value) of a 3-pointer is 0.33% 1.7%W Va =0.561*W V3 and 2-pointer is worth 0.5 % W Va; or in other words, the 3-pointer is worth 12% more
in win value, despite having equal nominal value. If we model the team as have preference over mean and variance, we could map any e to a
utility value of variance. However, we view c as a more directly interpretable parameter.
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Figure 1: ar as a function of game state. Quarters 1-3 (left) and Quarter 4 (right).

usage curve relates the frequency of a given shot (in this case a 2 or 3-pointer) to it’s success rate. Usage curves are
naturally assumed to be downward sloping and were estimated as such in Goldman and Rao (2011). This feature
implies that as a team shoots more 3’s, the probability of success on each successive 3-point attempt goes down.?
Let ¢{u3) denote the average probability of success for 3-pointers when the fraction of shots attempted as 3’s is
uz € [0,1] and /(1 — ug) the corresponding average probability of success on 2-poin attempts. The downward
sloping assumption implies J‘f’—i < D,i—ﬁ > (—as a team shoots more 3-pointers the average returns to 3’s go
down and the average returns to 2’s goes up. Recalling that we define the win value of 3’s in relation to 2’s as
W Vs = aW Vs, we can now write the team’s maximization problem as:

max uz * d(ug) * aWVy + (1 —ug) = (1 —uz) * Whs {(2)
ug
the first order condition can be rearranged to give:

o p(us) + ¢ (u) ¥ us) = B(1 —ug) +¢'(1 — ua)(1 — ua) (3)

The first order condition states that the marginal returns to 2-pointers and 3-pointers should be equal. The
left side gives the marginal returns to shooting a 3-pointer. Shooting an extra 3-pointer returns the current average
value o * ¢(uz), but it also impacts the average value of all the other 3-pointers taken uz by a degree given by the
slope of the usage curve (¢'(us)). The right hand side gives the marginal returns to shooting a 2-pointer and can
be understood with similar logic. In this model with no defensive adjustment, us is increasing with o To see this
note that if & increases then the left side goes up because the term ¢{uz) + ¢’(u3) * us has to be positive, otherwise
the marginal 3-pointer nets negative value. So the left side must increase, to counter-act this, the right side must go
up as well which occurs only when g increases.

Appendix Figure 2 gives a graphical representation of the maximization problem and the impact of an increase
in o Starting at @ = 1.5, point A determines the baseline optimal shot mix. Optimal shot choice does not imply
2-pointers and 3-pointers offer the same average point value. The difference in average shot value is determined by
the slope of the usage curves and the y-intercepts. In practice 3-pointers tend to return greater average efficiency
and are shot less often than 2’s, together this imples a higher y-intercept and a steeper slope in the usage curve for
3’s. The figure also shows the impact of an increase in a, which is represented by the shift out in the 3-point value

3Goldman and Rao (2011) give an empirical reason for downward sloping usage curves in this setting, If we model the offense as getting shot
opportunity arrivals over the course of a 24-second shot-clock, then to take more 3’s, the team has to accept lower quality 3-point opportunities
on the margin.
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curve. The new equilibrium is given by the vertical line intersecting A’. Point B’ gives the new win value of 2’s
and point C’ the new win value of 3’s. Point D gives the new nominal value of 3s (the point value). We are now
now in a position to state our first proposition:

Proposition 1 [n the model with no defensive adjustment, as o increases the fraction of 3’ attempted (us) goes up, the
nominal value of attempted 3’s goes down, the nominal value of attempted 2’s goes up and the real value of attempted 3's

goes up.
Proof: See Appendix

The model without defensive adjustment is useful to provide intuition and also can be intetpreted as represent-
ing a world in which defensive adjustments matter relatively little, which may apply, for instance, to a team playing
man-to-man defense that lacks the quickness and length to alter their strategy and really clamp down on opposing
3-point shooters. Incorporating defensive adjustments to our model is straightforward; the defense’s objective is
simply the opposite of the offense’s (it wants to minimize equation 2)—an increase in the value of 3’s increases the
incentive to defend against them. We assume the defense has a unit of “defensive resources,” which it can apply to
defending 2’s and 3’s: dy + dy = 1; more defensive attention lowers the success rate of a shot type. We modify the
usage curves to include defense (¢(us, ds), B(us, dz)). Analysis of this model is involved so we have placed it to the
Appendix. Interested readers are directed there. We now state our second and third propositions:

Proposition 2 In the model with defensive adjustment, as o increases the nominal valne of attempted 3’ falls and the
nominal value of attempted 2’ rises.

Proof: See Appendix

Proposition 3 [n the model with defensive adjustment, as o increases the change in the usage rate of 3’s is ambignous. It
depends on the slope of the 3-point usage curve, the impact of defensive on the marginal shot values and the concavity of
the usage curves with respect to defensive pressure,

Proof: See Appendix

Proposition 2 states that the prediction of the no-defense model that carries through is the drop in the nominal
efficiency of 3’s as « increases. Proposition 3 states that the other predictions of the simple model are not robust
~ when we allow for a large class of defensive pressure adjustments. With defensive adjustment, the offense will shoot

more 3’s provided the defense cannot adjust pressure effectively enough to discourage these additional attempts.
. 'The details, which are in the Appendix, are a bit a hard to grasp at first, but the main intuition comes down to
relative flexibilities of the offensive attack and defensive response.

Qur final extension of the model is to allow for a multiplicative function of « on each usage curve that accounts
for a possible motivational impact of being behind in the game (we could also model this as an additively separable
term). It is easy to show that this term will cancel out of the first order conditions. However, we must amend
Proposition 2 to be:

Proposition 4 If we allow for a motivational impact of trailing and defensive adjustment, then as o increases the nom-
inal value of 3’s falls relative to the nominal value of 2.

When 3’s become more valuable, maximization implies that the efficiency of 3’s must fall relative to 2’s. This is
our most robust prediction, as it is true in the very general defensive adjustment setting and allowing for an extra
motivational impact of being behind. Optimization reguires that Proposition 4 holds.
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4 Results

In our empirical analysis, we are careful to exclude situations in which one team has less than a 5% chance of
winning. Actions in “garbage time” lack meaningful consequences and tell us nothing useful about whether a team
is optimizing. We also eliminate fast-breaks (shot clock > 14) and end of quarter shots, as they tend to have very
deifferent strategic considerations.

4.1

We first examine the impact of & on the usage rate of 3-pointers. We model the probability a team’s first shot on
a possession is a 3-pointer using a random coefficient linear probability model, which allows coefficients to vary
for each team in each season (a “team-year”). We control for unique five-man offensive lineup (4) and opposing
defensive lineup () using fixed effects for each line-up. Our estimating equation is given by:

Frequency of 3-point vs. 2-point shot attempts

PT(3PA-'1J) = df)ffp + Dty +ﬁ1,t[a'p X l{ap < 15}] +ﬁ2,t[ap X 1{0511 > 15}]1

where O ff, and Def, denotes the five-man offensive and defensive line-ups on possession p, respectively, and a,
denotes the value of a faced by the offensive team on possession p. This specification is very general and ensures
that we are not confounded by lineup effects. 8; gives the impact of an increase in o for possessions when a < 1.5,
which corresponds to the case when the team is leading. In this case, a increasing pushes the team closer to the
riskeneutral baseline. fg gives the impact of an increase of & when o > 1.5, meaning the team is trailing. In this
case, o increasing moves the team to a more desperate, risk-loving situation. In both cases, as & increases, the team’s
preference for 3-pointers is increases relative to 2-pointers. Estimating this model for each team-year in our sample
produces 120 total estimates of each parameter.

Table 1: Random—coefficient estimates of the impact of o on three—point usage rates.

Explanatory Weighted average’ ~ Mean Median
Variable coefficient coefficient  coefficient
t—stat t—stat t—statt
B1:ap x 1{ey, < 1.5} —0.10% —0.10% —0.0799
l=—g2r1 l=—g.24 l=—2,37
Bty x L{a, > 1.5} 0.231 0.243 0.175
i=1r13.40 t=13.44 t=3.47

Team-years= 120, Shots=4g1,544
t Inverse variance weights used to aggregate coefficients.
1 Sign test used to construct t—statistics on the median.

Table 1 aggregates the estimated coefficients. Examining the first row, we see that £y is significantly negative.
When a leading team’s « increases, it shoots fewer 3-pointers; that is, the opposite direction as predicted by the
no-defensive adjustment model. As shown in Figure 1, o increasing for the leading team means, all else equal, the
game is getting closer. The leading team appears to tighten up in this situation, shooting fewer 3’s, despite the
fact their preference for 3’s is increasing. Taken alone, we cannot conclude that this pattern of behavior, while
perhaps surprising, is a violation of optimal shot selection because in our model with defensive adjustments that
the impact of & on 3-point usage rate depends on the relative adjustment ability of the offense vs. defense. However
the estimates of By give us some evidence that this negative coefficient is in fact a sign of sup-optimal behavior.
Examining the second row, we see that for the trailing team, as « increases the team shoots more 3’s.

The usage behavior displays an interesting asymmetry. When a trailing team’s preference for 3’s goes up (be-
comes more risk-loving), it shoots more 3’s and fewer 2’s. But when a leading team should become more risk-
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neutral, it actually behaves in a more risk-averse way, switching to 2-pointers. If we make the reasonable assump-
tion that the defensive adjustment technology is similar when a team is leading vs. trailing, then the usage estimates
indicate that trailing teams respect changing risk preferences (the “price of risk”), but leading teams do not, even so
far as inverting the relationship.

4.2 The efficiency of 3-point vs. 2-point shot attempts

We delve further into this asymmetry in our analysis of shooting efficiency. Recall that our most robust prediction
is given by Proposition 4. Even if players get generally better when they are trailing, our theoretical model still
implies that 3-point opportunities cannot increase in value as much as 2-point opportunities. That is, the gap in
point value between 3 and 2-point attempts must be declining with .. We investigate this claim with the following
random-coefficients linear regression model:

E(P{)intsp) = (5()_ffp + ¥Defn + B 1{3PAP} 4 ﬁz)t[(ap — 1.5) X l{ap < 1.5}} -+ ﬁg,t[(ap — 1.5) ® I{Cvp > 1.5}]
+ Bud[L{3PAL} % (cp — L5) X L{ap < 15} + Boc[1{3PAL} X (ap — 1.5) x 1{ap > 1.5}].

We again include fixed effects for each unique five-man offensive and defensive line-up to exclude confounding
effects from lineup selection. We have written expected points as the dependent variable, but we actually use 3
different, albeit similar, measures (we will use the word “efficiency” to refer to the class of dependent variables we
use and discuss differences below). 1 can be interpreted as the average efficiency differential between 3 and 2-point
shots in a risk-neutral (@ = 1.5) game state. B, captures the impact of & on 2-pointer efficiency for the leading team
(o < 1.5), while S5 captures this effect for the losing team. 4 and S5 directly test Proposition 4, these coefficients
represent the differential effect of a on the efficiency of 3-point attempts for a winning and losing team respectively.

The three dependent variables are reported in Panels 1-3 of Table 2. Panel 1 gives the“effective field goal %,”
which is simply the points scored on the shot for shooters that were not fouled. Panel 2 gives “true shooting %,”
which takes the number of points scored on the shot plus any free-throws made related to the shot*. In Panel 3
we report “gross offensive efficiency,” which is the number of points scored on a possession after the shot attempt
occurs (this includes the shot going in, free-throws related to the shot and any points scored after an offensive
rebound(s)). By using all three variables we can discern if the effects are being driven by differential offensive
rebounding rates across shot types or fouling patterns by the defense.

Estimates of 31_s are computed for each team-year. The following results apply to all three dependent variables,
we discuss differences where necessary. Ay is strongly positive—3 pointers have higher average point returns in the
risk-neutral baseline. For gross-offensive efficiency and true shooting %, the mean estimate is about o.15 points-per-
shot. Recall that this implies a higher constant and steeper slope for the 3-point usage curve. The estimates for 2
and B3 are dramatically, and very significantly, positive. This means that as a team goes from being ahead to being
behind, 2-pointers get more and more efficient. This effect is in fact stronger for a trailing team (83 > f2). This is
strong evidence of the motivational impact of losing.* We note that the ffs : B ratio is highest for gross possession
efficiency, indicating that some of the motivational effect of losing is coming through offensive rebounds (which
the two other measures ignore, the estimates indicate about 30% of the effect is coming through rebounding).

The key test of optimality lies in the estimates of 4 and fs. Proposition 4 states that optimal response to
changing incentives over risk requires that both cocfficients are negative. The reason is that as v increases, a offense
should become more risk-loving and the defense should want to defend 3’s more—since the true value of a 3-
pointer has increased, the nominal or point value of a 3 should decrease in equilibrium. First the positive results:
this optimality condition is met for trailing teams, fs is significantly negative (p < 0.0001 for the weighted average
in all specifications). As the trailing team becomes increasingly risk-loving, the point value of 3-pointers declines
relative to 2-pointers just as predicted by the theory. Recall from Table 1 that the trailing team also responds by

+Note these first two measures are usually computed with a 1 for a made 2-pointer and 1.5 for a made 3-pointer in order to have the same
scale as traditional FG%. We jnstead use 2 and 3 respectively (effectively doubling the value), in order to stay consistent with our other third
measure.
SThe impact of losing on player motivation and performance is examined more closely in a related paper of ours [ﬁ] .
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Table 2: Random —coefficient estimates of the impact of a, on nominal returns to three point attempts.

Effective Field Goal % True Shooting % Gross Possession Efficiency

Explanatory Weighted? Mean Med.? | Weighted? Mean Med.* WeightedT Mean Med.F

Variable avg. coeff. coeff. coeff, avg, coeff. coeff. coeff. avg. coeff, coeff, coeff.

B1: 1{3PA,} 0.223 0.221 0.218 0.143 0.142 0.143 0.155 0,155 0.158
t=409.50 t=48.59 t=r10.77 t=3r1.95 t=31.40 t=r0.22 I=34.74 i=34.20 t=ro.59

B : (x;’;x 1.71 1.7§ 1.65 1.58 1.65 1.54 1.84 1.92 1.76
1{ap < 1.5} t=39.72 t=40.21 t=1022 t=29.04 t=39.76 t=10.22 t=45.54 t=46.14 I=ro022

B apXx 2.3 2,34 2,14 2.8 2.83 2.64 3.33 3.35 3.25
Hap > 1.5} t=3g.20 t=37.0§ t=rozz t=50.42 t=40.16 t=1095% t=60.30 t=5g.26 t=10.77

Ba: 1{3PAp} X ap 0.213 0.185 0.142 0.343 0.337 0.348 0.387 0.384 0.317
x1{ap < 1.5} t=2.44 t=2.03 t=06.91 t=3.97 t=3.74 t=2.56 t=d4.47 t=d.26 t=2.37

Bs : 1{3PAp} X ap —0.71 —0.758 —0.66 —I.1 —1.18 —0.965 —0.969 —1.03 —1.0§
x1{ap > 1.5} t=—5.92 t=—6.11 t=—2.02 | t=—045 t=—073 I=—iq56 | t=—g28 t=—g47 t=—456

Team-years= 120, Shots=481,544, T Inverse variance weights used to aggregate coefficients
1 Sign test used to construct t—statistics on the median, * We suppress the —1.5,

shooting more 3-pointers as well, meaning the results are consistent with the offensive having a greater ability to
adjust than the defense (qualitatively consistent with the no defensive adjustment model). The offense shoots more
3’s and the average value falls—making this trade-off respects the true value of 3-pointers in terms of winning the
game and is consistent with a downward sloping usage curve.

The results take a different turn when we examine the behavior of the leading team. (4 is estimated to be
significantly positive (about 1/3 the magnitude of 5). This is the wrong direction and is a violation of optimal
shot selection. Recall that we found in Table 1 that the leading team tends to shoot fewer 3’s when o increases.
Here we see that this decrease in usage is accompanied by an increase in efficiency, which is again consistent with
a downward sloping usage curve and limited defensive adjustment. For a leading team, as the game gets closer, the
team should become more risk-neutral, yet the team actually behaves in a more risk averse manner. Leading teams
do not appear to place the right price on risk, whereas trailing teams do.

4.3 The Rubber-band effect and performance in the clutch

So far we have documented two important behavioral patterns that increase the likelihood of a comeback by the
trailing team. First, the trailing team shows a boost in efficiency for both shot types. Second, the leading team
tightens up as the score gets closer - shooting fewer 3’s and more 2’s, contrary to the change in their incentives. We
call the combined impact the “rubber band effect.”® More games tend to be close late than we’d otherwise expect to
observe. What this means is that performance in the clutch tends to be very important in the NBA, because clutch
moments are relatively frequent.

The natural question is “how is team quality related to clutch performance.” To answer this question we
estimate how gross offensive efficiency relates to the win value of a point (a natural measure of how importance
points are). Our estimating equation is given by, where we again use line-up fixed effects:

E(POintSp) = 6Offp i YDefp + ﬁl,oTeump ' VVVPp i ﬁE,dTﬂump : VVVPP

We plot the results in Figures 2 and 3. The y-axis measures the difference in performance in a clutch moment
(WVP=0.07, a moment in which each point increases the teams chance of winning by g percentage points, which
corresponds to about the 97th percentile of importance) as compared to how that team does in a median moment
(WVP=o0.02). We call this measure the “clutch bonus” and plot it as points per 100 possessions. In Figure 2, the
x-axis gives baseline offensive efficiency (points scored per 100 possessions in typical situations). This is a natural
measure of pace-adjusted offensive quality. Each dot represents a team-year. It is clear that on average teams do

6Substitutions to conserve star players for games down the road could also contribute and is outside the scope of our ‘fixed lineup” analysis.
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worse in clutch moments—for most teams it’s harder to score when the chips are down. The slope of the fitted
line is 1.65 and highly significant (¢ = 7.27). This indicates that the better a team is at offense, the better it does in
the clutch relative to its own baseline—bad teams do much than their worse than their baseline, average teams do a
little worse and very good teams actually get better in the clutch.

In Figure 3 shows how defense quality relates to clutch performance. Defensive efficiency, given on the x-axis,
is points allowed per 100 possessions, so lower numbers correspond to stingier defenses. The y-axis gives the clutch
bonus of the opposing team. It measures how well the defense performs in the clutch, with negative values being
good. Again we see most values are negative—the average defense is better in the clutch. The clutch bonus is more
negative for better defensive teams; for rather poor defensive teams the value is positive, meaning they consistently
do worse in the clutch as compared to baseline scenarios. The slope of the fitted line is —1.09 (¢ = 4.20).

Comparing the absolute values of the fitted lines and the R? of the regressions, we conclude the impact of unit
quality on clutch performance is significantly stronger and less noisy on the offensive side of the ball. What this
means is that for two evenly matched-up teams in terms of baseline performance, a team with a good offense will
tend to have an advantage in the clutch. For teams of differing overall ability, the better team will have an advantage
in the clutch on both sides of the ball and will thus tend to pull out more close games than their baseline advantage
would suggest.
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Figure 2: Offense clutch performance vs. baseline  Figure 3: Defense clutch peformance vs. baseline
efficiency. efficiency.

s Conclusion

We theoretically and empirically investigate the optimality of NBA shooting decisions in response to changing
incentives over risk. The most robust theoretical requirement is that the gap in nominal efficiency between 3 and
2-point attempts must be negatively correlated with the offense’s preference for risk. We find adherence to our key
test of optimality for the trailing team—as a trailing team gets in a more desperate situation (becomes more risk-
loving), the efficiency of their 3-point attempts falls. The trailing team also tends to increase their fraction of 3-point
attempts in proportion to their preference for risk, consistent with the ability to shift the offensive attack more
flexibly than the defense can adjust resources. The leading team, however, violates our optimality requirement;
leading teams shoot fewer 3’s as their preference for risk increases and these 3’s actually offer higher average point
value (consistent with a downward sloping usage curve). As a lead decreases, the leading team should become more
risk-neutral, but teams in this circumstance actually tighten up and become more risk averse, contrary to what
their risk preferences ought to be to maximize the chance of winning the game.

We also find a strong motivational effect of trailing on the scoreboard—a given lineup sees a boost inefficiency
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for both 2’s and 3’s—combined with the sub-optimal shot selection of the leading teams this helps explain the
surprising frequency of comebacks in the NBA and means clutch moments tend to occur more frequently that
we'd otherwise expect. We show that for an average team it’s harder to score in clutch moments, but very good
offenses actually do better in the clutch, whereas bad defenses actually get worse. Taken together, this means good
teams have an even greater advantage when the chips are down.
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6 Appendix

6.1 Figures

Win Prob
Home Win Prob

Min. Left Lead Min. Left Home Lead

Appendix Figure 1: Parametric projects of win probability conditional on score margin and time remaining for
the home team in even match-up; Panel 2: non-parametric estimates of the same function.
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Append1x Figure 2: Graphmal representation of the no- -defensive adjustment model. The initial “profit
maxmnzmg * condition given by the line intersecting point A and the impact of an increase in & with thc new
equilbrium given by the line intersecting A’.

6.2 The model with defensive adjustment

Offense (defense) seeks to maximize (minimize) the offenses increase in win probability in a given possession. This
utility function (for the offense) is

U = uapsW Vs +uapa W

WV, = qigPs + UaP2

subject to the constraints that

Uy =1 —ug
deg=1—ds
p3 = P(ua, ds)
P2 = dj(uﬂ'ﬂ dE)
We assume the following (written in terms of ¢ but they all hold for ¢ too):

1. Usage curves are downward sloping: ¢1 < 0.

d*(us - $(us))

2. Usage curves are such that marginal shots have declining value: 2
L
3

G AnALyir

= 26/ (u3) + uze”(uz) <0
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3. Defensive pressure lowers shooting percentage: ¢, 12 < 0.
4. Defense has diminishing returns: ¢ag, $as > 0.

5. Using more possessions in a certain way increases (makes more negative) returns to defense against that type
of use: (¢pa + uj¢ar) <O.

Let starred values denote the equilibrium quantities. Then the defense’s first order condition is given by
ceu o (v, dz) = (1 —ug)iha(l —ug, 1 —d3), (4)

where the subscript denotes a derivative in the corresponding argument. The offense’s first order condition is given

by
al¢(us, di) + v (u3, d5)] = (1 —uj, 1 —df) + (1 —uf)yr (1 —uz, 1 —d)] (s)

where the bracketed quantities represent marginal shot probabilities for 3 and 2 point shots respectively. Both of
these must both be greater than 0. Taking total differentiation of (4) and omitting the arguments of ¢ and ¢ yields

u¥poda + culdoaddy + ado + uida)dus = —ujtbaadds — (o + ujthar)dus
and rearranges to
uhdada + [a(pe + ubdar) + (Yo + ujrhar)] dug + [auidos + uithasldds = 0 (6)
boda + agidul + agsedds =0,
where the values of 11, a19 and by are defined implicitly. A similar analysis of equation (5) gives

[d(us, d5) + w1 (us, d3)]do + [(2¢1 + uidia) + (291 + uzthir)]dug ' (7)
+ [a (¢ + uzhra) + (P2 +usvng)] dd; = 0
bida + ai1duf + ajadds = 0.

where the values of as1, azs and by defined implicitly. In matrix notation

ai1 412 du§ _ bl dis
ap1  agz| |dd3 by

Then by Cramer’s Rule
a1 b (= (+)
@ agt bo|  agibi —anbs -0
dox a1 012 a11d2z — @12021
—_—
a1 Qo2 (-)

To sign these derivatives not that, a;; < 0 {marginal shots have diminishing value), @22 > 0 {diminishing
returns to defense), and a1y = ag1 < 0 (shooting more 3s raises the effectivencss of defense on 3s). Thus both
denominators are negative. Also by > 0 (its a marginal shot value) and by < 0 (¢2 < 0). Signing this derivative
states that defensive pressure on 3’s must increase with c.

Proof of Proposition 2
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by g (+) (+)
duj bz aga| _ byaip—biass
da ail  G12 a11022 — 021012
—_———
az1  G22 ()
; ; duz . .
Manipulating the numerator, we have that Pk if and only iff:
o
ais a22
At > ey
by~ by

We first note that both sides of this inequality are negative, it is convenient to write:

a2
by

P
by

012 = oo+ ulichia)+ (tho +usthrz) is the cross-partial marginal effect of defense. It says “how much more effective
does defense become when an offense increases its fraction of 3’s. This terms gives the incentive for the defense to
adjust into 3’s. by is the offense’s marginal shot value of a 3, as the usage curve gets steeper, this value falls. On
the RHS, the numerator is a term, cew}gan + us1as, that captures the concavity of the defense’s response function.
The denominator captures the marginal impact of defense. If the above equation holds, the offense will take more
3’s when their preference for risk increases. This equation says this is more likely to occur when the defense has a
concave adjustment function (they face strong diminishing returns to selective pressure), when the cross partial is
low (the extra impact of guarding 3’s does not increase much with the offense’s 3-point usage) and when the usage
curve of a 3-pointer relatively flat (raising the marginal value of a 3-pointer, which raises the denominator on the

LHS).

Proof of Proposition 3
Other comparative statics are directly implied by our constraints,

L P W

do do

ddy  dds

... S

da da

dpy  duy | dd

e T HmY

(+) (+) (+) (=)

P W mii —~
_ $1(brass —b3012) + a(011bs — ap1b1)

G11422 — 012021
S e i i
(=)
which first does not appear signable, but can be rearranged to

(=) (=) +)
ey i
_  Pabians +by(daa11 — dra13) — ¢aazib <0
11022 — 412021 !
AN i

!
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where the middle term in the numerator can be signed by noting that by < 0 and (¢oa11 — ¢1012) = 1da(l +
2uf) > 0.

dd;
do

apg
dey

follows by symmetry to the above calculation.

d Y
zf%ﬁ— Wy <0,
(8}

6.3 Proofs for the baseline model

Proof of Proposition 1 The only part of Proposition 1 not shown in the text is that the win value of 3’s must increase.
We think intuition can be best scene through the lense of a classic economics setup. Consider a monopolist facing
demand curve P(g) and an upward slope marginal cost curve C"'(g) < 0. Imagine a subsidy from the government
of so that for each dollar carned, the firm earns 1 +z = a > 1 dollars. What the proposition states is that if the
government offers subsidy x, the price cannot fall by more than .

This problem is isomorphic to our shot allocation problem because the downward sloping 2-point usage curve
implies an increasing marginal opportunity cost of shooting 3’s. As I shoot more 3s, I give up better and better
2-pointers. The first order condition of this problem is:

aMR(q) = MC(q)
Taking the total derivative, rearranging and multiplying by ‘;—z we get:
dp MR dp
dae  \MC'—aMR's/) dq
We are interested in whether p # « is greater than the orginal price, this amounts to whether:

d(pe) o dp
do doy

+p>0

Plugging, in our condition becomes, is:
_ aMR dp
P=\amrs —mc' ) dq
(p+7'(9)9)r (9)
p(a)q +2p'()

Cross-multiplying and rearranging we have:

' (g) < q(p'(9)*q — p'(g)p)
pq

—op/(q) < q(p'(q)%q — p'(@)p)
pq

where the second line follows because qp''(q) + 20’ (g) < 0 (marginal revenue is downward sloping). Canceling out
and simplying, this equation reduces to:

D
Plg) > —=
q
r g
p(g)*—=>—1
Gl
1
- >-1
€
where € is the elasticity of demand. The last line must hol

d, otherwise the firm earns gegative ni)arginal revenuye.
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6.4 Parametric model of win probability

A game of NBA baskerball has 48 minutes of game time, with ties being settled by a s-minute overtime. Consider
two teams, home () and away (a). Let S,y and S, denote the current scores for the home and away team with
N offensive possessions (for each team) remaining in the game. Let P,; and Fy; denote the number of points
scored by the home/away team on the i** possession from the end of the game. The home team wins if it has more
points at the end of the game, which we can express as:

N N N
Sh,o > Salo = Sh,N + th,i > Sa,N = ZPGH; = Z Ph,i - Paﬂ- > Sa,N — Sh,N-

i=1 i=1 i=1

To model how teams generate points, let {5,072} and {pq, o2} represent the mean and variance of points per
possession that each team is able to achieve in the match-up. If the number of remaining possessions, N, is large,
the central limit theorem gives the probability of the home team winning as:

N
P(I—Iome Win) = P(Sh,o > Sa)g) =P (Z(Ph,i — Pa‘i) > SQ,N = S.'L,N)

1=1

- VMa N — Ma
:@(Sh,N Sa, v+ N{pp H))7 (9)

N(Gj;z1 +o2)

where ® is the CDF of the standard normal distribution. Examining this expression, we see that an ability advan-
tage (¢ higher than opponent) matters proportional to the number of remaining possessions. Each factor’s marginal
impact on winning the game is easily obtained by differentiating equation (g). The following expression gives the
impact of a point scored for the home team on win probability:

dP(Home Wm) _ qb (Sh,N — SQ>N) + (N(,LLh — 4“*0,)) i ( )
dSh.n NGET ) JN(o2 +02) 2

where lower-case ¢ is the standard normal PDF. To estimate this equation, we first impute the number of
remaining possessions using the team-specific paces-of-play in a given match-up and by adding one possession to the
team currently holding the ball. Given the standard normal specification, it is natural to estimate equation (g) with
Probit regression. The projections give the probability the home team will win at each of state of the game. Figure
1 Panel 1 shows these projections. ‘
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Abstract

Basketball is a dualistic sport: all playets compete on both offense and defense, and the cote strategies of basketball
revolve around scoring points on offense and preventing points on defense. However, conventional basketball
statistics emphasize offensive performance much more than defensive performance. In the basketball analytics
community, we do not have enough metrics and analytical frameworlks to effectively characterize defensive play.
However, although measuring defense has traditionally been difficult, new player tracking data are presenting new
opportunities to understand defensive basketball. This paper introduces new spatial and visual analytics capable of
assessing and characterizing the nature of interior defense in the NBA. We present two case studies that each focus
on a different component of defensive play. Our results suggest that the integration of spatial approaches and player
tracking data promise to improve the status quo of defensive analytics but also reveal some important challenges
associated with evaluating defense.

Introduction

Basketball is a dualistic spott. Players compete on both offense and defense, and the two core objectives of all
basketball stratagems are scoting points and preventing points. Although it is self-evident that the final score of
every basketball game depends equally on these two facets, this basic tenet is not properly represented in
contemporary basketball statistics. A quick reading of even the most “advanced” basketball statistics would suggest
that basketball success hinges morte on offensive factors and less on defensive factors. Few of the sport’s most
common mettics quantify key defensive aspects. Basketball’s most common statistics are related to events that are
most obviously attributable to one individual action at one moment; defensive prowess in basketball fails to meet
this basic criterion.

Contemporary basketball expertise is significantly hindered by the inability to properly assess defensive play; cutrent
evaluations of a player or team’s defensive tendencies are constrained by a lack of proper reasoning artifacts. Most
defensive analytics remain guided by the simple tallying of disparate event types including “steals,” “blocks,” and
“defensive rebounds,” which does little to characterize either the natute or the effectiveness of defensive
performance. Effective defensive play requires a cohesive assembly of structured actions converging upon a simple
objective: keep your opponent from scoring points. With this in mind, as the NBA enters its “big data” era and new
kinds of basketball analytics emetge, advancing defensive understanding presents one of our biggest challenges.

This paper explotes defensive evalnations in the NBA and examines emerging opportunities and challenges
associated with measuring defense using optical tracking data. The paper presents a new methodology designed to
characterize the interior defensive effectiveness of NBA “big men”. The core objectives of this paper ate 1) to
improve the characterization and understanding of intetior defense in the NBA, and 2) expose key challenges
associated with measuring defense as new foims of performance data emerge. We present case studies that 1) use
spatial analyses to extract new defensive mettics from optically tracked game data (SportVu data) and 2) use visual
analytics to present results.

The paper also introduces a new ensemble of spatially minded metrics that present a novel and simple means to
characterize basketball performance. One key and recurring limitation of many basketball statistics is their relatively
limited explanatory abilities. For example, even the most effective “advanced” metrics like “defensive rating” (points
allowed per 100 possessions) may provide valuable insight into overall performance ability, but simultaneously they
often fail to offer any additional explanatory insight as to why a performance may be good or bad. We introduce
“spatial splits” - a concept inspired by baseball’s “triple-slash™ lines - as a means to address this shortcoming; in
tandem with other metrics, we contend spatial splits provide additional insight into the nature of how players and
teams are performing within coutt space, therein providing analysts with a more powerful set of reasoning artifacts.

The paper contains three main sections: a brief background section is followed by an explanation of our
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methodology, which in turn is followed by a discussion of our results and conclusions. We also append thorough
listings of detailed results at the end of the paper.

Background

OVvERALL NBA SHOOTING

MoST TMFPORTANT
TACTICAL AREAY

(4asove 60%
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Figure 1: Querall shooting efficiencies in the NBA. The only shols that go in over half the time ocuuir close to the basket. For this reason,
this relatively small area remains the rost important factical space - and the most vigorosusly defended space in the NBA. Graphic by
Kirfe Galdsberry.

NBA shooters only make about 39% of their field goals from everywhere outside of 7 feet. The only shots that go in
more than half the time occur very close to the tim. Despite the rapidly growing importance of the 3-point shot,
good shots close to the basket remain the best shots on the floor; not only do they result in points at 2 higher rate,
when missed they have a much greater chance of being rebounded by the shooting team. Over 70% of shots near
the rim either result in points, a shooting foul or an offensive rebound. Good shots near the rim are clearly
advantageous. For this reason, the league shoots over 1/31d of its shots from the tiny portion of the court close to
the basket, and defenders protect this area with more vigor than any other real estate on the court. Although the
vitality of this strategic space is self-evident, few if any contemporary analytics effectively characterize the ability of
players or teams to defend basketball’s most sacred real estate. The problem is obvious: interior defense is critical to
basketball success, but our ability to measure or charactetize players’ interior defensive abilities remains
undeveloped. Consider these two basic questions:

1) Who is the best interior defender in the NBA?
2) What metrics would you use to answer that question?

The NBA’s most prominent defensive metrics can be misleading, but this is not a problem unique to basketball.
Until vetry recently, the dominant conventional defensive metrics in baseball were “errors” and “fielding
percentage,” which do not frequently costelate with a player’s true defensive value. In the NFL, the best cornerbacks
never lead the league in any conventional stats because quarterbacks are too afraid to even throw in their direction;
they don’t even get chances to defend passes. Basketball exhibits similar issues; our conventional defensive mettics
fail to accurately reveal the NBA’s most dominant defenders.

}Vf“i

2 2013 Research Paper Competition
Presented by:
= -




Wi UIITY MITHLI 11V YU LIILITV
MARCH 1-2, 7043 BOSTON CONVERTIDH AND EXHISITION CENTER

resemted by IS T8

Last season, Oklahoma City’s Serge Ibaka led the NBA in blocks by averaging an incredible 6.46 blocks per 48
minutes, but what does that really reveal? Does that mean he is an “elite defender,” or even the “best shot blocker”
in the NBA? Shot blocks are relatively infrequent events that have an ambiguous relationship with defensive
effectiveness. In many cases, for a shot block event to occur a shooter has to believe that his shot will not be
blocked. In other wotds, the shot blocker has to “come out of nowhere” or has to somchow deceive the shooter; at
the point of the shot’s release the shooter believes the path is clear, but that turns out not to be the case.

Dwight Howard, who is commonly referred to as the NBA’s “most dominant” interior defender, only averaged 2.69
blocks per 48 minutes, almost 4 fewer than Ibaka; however, it could be argued that Howard’s mere presence
“blocks” shots before they happen. The presence of a truly dominant interior force can augment the spatial behavior
of the offense in the same way that 2 dominant cornerback changes the behavior of a quarterback. While it is easy to
tally up things like blocks, rebounds, and steals, it’s much harder to measure the kind of disruption or the sttategic
augmentations that dominant interior defendets like Dwight Howard create. We define “The Dwight Effect” as the
ability of an interior defender to teduce the efficiency of an opponent’s shooting behavior.

Perhaps the most logical method to evaluate this distuption is to measure the spatial shooting pattetns and
efficiencies of NBA teams in the presence of different interior defenders. Using emerging data sets from SportVu,
it's now possible — although still not easy — to look at defense in new ways. In the case of interior defense, we can
evaluate how NBA offenses behave differently depending on which NBA “bigs” are on the floor; furthermore, we
can evaluate how offenses behave when a given NBA interior defender is “protecting the rim” or near a shot event.

Methodology, Data, and Case Studies

We conducted two separate case studies of interior defense in the NBA. Using player tracking data provided by
STATS (SportVu) we evaluated player positions, shooting tendencies, and shot outcomes for over 75,000 NBA
shots during the 2011-2012 and 2012-2013 seasons. We evaluated the spatial structures and efficiencies of NBA
shooting in the presence of the 52 NBA interior defenders who faced at least 500 shot attempts during the study
petiod. Fach case study monitots a different aspect of defensive effectiveness and introduces new metrics.

We introduce “spatial splits” as a means to communicate our results. Since NBA scoring efficiency is cleatly
dependent on spatial factors, we contend spatial splits offer a mechanism to detect, understand, and communicate
key aspects of NBA scoting efficiency. Presented in a manner meant to mimic baseball’s “slash line” or “triple-slash
line” these sequences of three numbers not only offer a basic quantification of a player or opponent’s shooting, they
also present an inherent explanatory characterization as well. Figure 2 depicts the 3 zones represented in the spatial

. splits.

Spatial Splits

by:@kirkgoldsberry

Frequency Splits: « of shats in close range /% of shots in mid-range / % of shots in 3-point range
Efficiency Splits: «lose range FG e /mid-range FG™ / 3-point range FG'

Figure 2: The 3 zones associared with spatial splils: close-range in green, mid-range in blue, and 3-point range in red. Spliiting offensive
performance data using these sones can belp characterize the nature of scoring bebaviors in the NBA.
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We introduce two kinds of spatial splits: frequency splits and efficiency splits. Both reflect percentage values in the
following sequence: Close-range value / Mid-range value / 3-point range value. Frequency splits focus on shot
distribution; each number corresponds to the percentage of shots that come from the corresponding zone. The
three numbers in the frequency splits should sum to 100 (barting any rounding errors). Bfficiency splits characterize
how well a player or teams shoots from each zone; cach value represents the field goal percentage in the
corresponding zone. As an example, consider the spatial splits of the NBA as a whole, and two NBA players from
the previous two NBA seasons: Kevin Durant and Josh Smith.

NBA League Average: Frequency 35/41/24 Efficiency 53/39/36
Kevin Durant: Frequency 27/46/27 Efficiency 65/44/37
Josh Smith: Frequency 45/43/12 Efficiency 61/37/30

The above examples illustrate the ability of spatial splits to quicldy summarize key differences in scoting tendencies.
These splits quickly communicate a few facts: 1) In terms of shot distribution, Kevin Durant shot 27% of his shots
close to the basket, 46% of his shots in the mid-range, and 27% of his shots from three-point range, 2) In terms of
shot efficiency, Durant shot 65% close to the basket, 44% in the mid-range, and 37% from beyond the arc — above
league averages in each zone, while Smith is only above average close to the basket. They also enable comparison
across players. In this case we can quickly note that Durant is less active close to the basket than Smith, they are
both active in the midrange, Durant is more active beyond the arc, and Durant is a more efficient shooter in every
area. We contend that this contribution is a valuable new way to characterize NBA scoring behaviors.

Although spatial splits present an effective way to characterize the nature of an individual player’s offensive
tendencies and abilities, in this paper we use them to evaluate defense. Mote specifically, within the context of
spatial splits, effective interior defense should manifest in two ways. The most obvious is perhaps reduced shooting
¢fficiencies close to the basket. The second is less apparent but perhaps more important: reduced shooting freguencies
close to the basket, and increased frequency in the mid-range and three-point areas. Taken together, reduced close-
range efficiency and reduced close-range frequency translate to fewer casy shots, fewer points, and fewer offensive
rebounding opportunities for the offense.

Case Study 1: The Basket Proximity Condition

The objective of the first case study was to examine the ability of interior defenders to “protect the basket.” This
case study considered shot attempts that occurted when there was an interior defender within 5 feet of the basket
and was designed to measure two aspects of point prevention: the ability to prevent shots near the basket, and the
ability to reduce the shooting efficiency of opponents near the basket. We evaluated shooting patterns using spatial
splits. As.a means to characterize the opponents’ shooting tendencies, we calculated both the frequency and
efficiency of shooting in each zone, but placed primary emphasis on close range shooting.

Case Study 2: The Shot Proximity Condition

The second case study evaluates the ability of intetior defenders to defend shots in their immediate proximity. This
study has two objectives: to determine how frequently an interior defender is proximate to a shot attempt, and to
determine how effective an interior defender is when they ate proximate to a shot attempt. In this case we place a
reduced emphasis on shot locations and instead evaluate two other aspects of defending; each aspect is evaluated via
a new meftric:

A) Shots Defended: the relative frequencies in which the defender finds himself within 1, 3, or 5 feet of shot
attempts.
B) Proximal FG%: the telative efficiencies of shooters in the proximity of the defender.

Results

Case Study 1: Basket Proximity

Overall more than 1/3 of shots in our superset of 76,000 shots occurred with an intertor defender within 5 feet of
the basket. We assert that “dominant” interior defense can manifest in two ways: reducing the shooting effictency of
opponents, and also reducing the shooting frequency of opponents. In terms of reducing efficiency, we found that
Indiana’s Roy Hibbert and Milwaukee’s Larry Sanders (Figure 3) were by far the most effective. We evaluated this by
measuring the field goal petcentage of close range shots when a qualifying interior defender was within 5 feet of the
basket. Overall, NBA shooters make 49.7% of their field goal attempts when qualifying interior defender is within 5
feet of the basket; however, this number drops to 38% when either Hibbert or Sanders are within 5 fect. In contrast,
we found that Phoenix’s Luis Scola and Golden State’s David Lee (Figure 3) were the worst defenders in these
situations; opponents made 63% of their close-range field goals when Scola was within 5 feet of the basket. See
Appendices 1 and 1A for a full list of qualifying defenders.
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Figure 3: Opponents' field goal percentages vary widely depending on which interior defender is close to the basket. Milwantee's Larry
Sanders is one of the most effective inferior defenders in the league; opponents struggle to score when he is near the basket. This is not the
case with Goiden State’s David Lee; when be is close fa the basket, gpponents score at very high efficiencies.

We also contend that dominant interior defenders often deter shots from even happening. Many NBA players will
be reluctant to “challenge” a dominant intesior player or be more likely to “settle” for a jump shot further from the
basket. We evaluated this effect by examining the percentage of field goal attempts that occur near the basket when
a qualifying interior defender is within 5 feet of the rim. We found that the most deterrent interior defender in this
sense was Dwight Howard. Overall, when a qualifying defender is within 5 feet of the basket, the NBA shoots
57.2% of its attempts close to the basket; however, when Dwight Howatd was the intetior defender this number
dropped to 48.2% (Appendix 1A). This is what we call the “Dwight Effect” — the most effective way to defend
close range shots is to prevent them from even happening. Although Howatd does not lead the league in blocks, he
does lead the league in “invisible blocks,” which may prove to be markedly more significant. When Howard is
protecting the basket, opponents shoot many fewer close range shots than average, and settle for many more mid-
range shots, which are the least productive shots in the NBA, Furthermore, out of centers who have faced at least
100 total shots in the hasket proximity study, Serge Ibaka ranked last; when he is within 5 feet of the basket,
opponents shot 74% of their shots in the close range area. This means that Ibaka is likely to be around any shot near
the basket and suggests that while Tbaka leads the NBA in blocks per game, part of the reason is that he has many
more “potential blocks” than almost any other defender. Full results for Case Study 1 ate presented in Appendix 1.
We also discuss the challenges and limitations associated with this study in the Discussion section.

Case Study 2: Shot Proximity

Overall 27.8% of NBA shots occur within 5 feet of a qualifying interior defender. We evaluated 21,042 shots that
met this criterion and examined two separate aspects of defensive tendencies: Shots Defended, and Proximal FG%.
The results for each ate presented below.

A) Shots Defended: the relative frequencies in which the defender is located within 1, 3, or 5 feet of shot attempts.
We calculated these frequencies for 93 qualifying defenders that faced at least 200 shots while playing defense. Tyler
Hansbrough had the lowest frequency of being close to shots; he was within 5 feet of shots only 20.7% of the time.
Only 3 defenders were within 5 feet of shots more than 35% of the time: Josh Harrellson, Kosta Koufos, and
Jordan Hill. Serge Ibaka was fourth at 34.5%. The full set of results is available in Appendix 2.

B) Proximal FG%: the relative efficiencies of shooters in the proximity of the defender. Overall, when thete 1s 2
qualifying intetior defender within 5 feet of a shot attempt, the NBA shoots 45.6% from the field; however this
value vaties considerably depending on which defender that is. The most effective proximate defender in our study
was Larry Sandets; opponents shot only 34.9% when he was within 5 feet of their shot. Conversely, Anderson
Varejao was found to be the least effective proximate defenders with a proximal FG% value of 54.2%. Table 1
summarizes the best and worst players according to proximal FG%, but a complete list of proximal FG% values can
be found in Appendix 2.
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Top 5 Proximal FG% Bottom 5 Proximal FG%
1. Larry Sanders 34.9% 48. Kevin Love 52.1%
2. Andrea Bargnani 35.2% 49. Jonas Valanciunas 52.8%
3. Kendrick Perkins 37.3% 50. David Lee 53.0%
4. Elton Brand 38.0% 51. Jordan Hill 53.9%
5. Roy Hibbert 38.7% 52. Anderson Varejao 54.2%

Table 1: The top and bottor 5 interior defenders according ta proxcimal FG%, which is defined as the opponent’s FG%o when the
gualifying defender is within 5 feet of the shot attempt.

Discussion and Limitations

In a league that is both teeming with new data soutces as well as desperate for better diagnostics, the application of
spatial and visual approaches to optical tracking data represents a vital new corridor to new kinds of basketball
expertise. Furthermore, pethaps no aspect of basketball is as important and as under-studied as defense. Our case
studies were designed to show how new data and emerging approaches can be integrated to help analysts better
characterize defense in the NBA. While we contend it is clear that these studies effectively demonstrated the
potential of spatial/visual analytics to expose new insights about defense, we also assert that the paper’s methods
only represent a small first step in a multi-step progression towards the core objective of better defensive analytics.

Evaluating defense in the NB.A is very difficult. Despite the new analytical opportunities introduced by player
tracking data, our cutrent ability to extract meaningful defensive analytics from these data remains undeveloped.
This fundamental notion manifests in multiple ways within our evaluation of intetior defense. Perhaps the biggest
limitation in our study involves the sample; player-tracking data is only being collected in a subset of NBA arenas.
More specifically, as of January 2013, only 15 NBA arenas are equipped with SportVu systems. This obviously biases
the sample and 1s likely to introduce etrot into our results. But our goal was not to generate the “be-all end-all”
ensemble of defensive analytics; instead our goal was to demonstrate the viability of spatial approaches as they relate
to making sense of defensive performance data.

Another key limitation is the lack of context associated with the data. Optical tracking data enables us to track player
movements in fascinating new ways, but it also reduces players to geometric primitives that frequently obscure the
nature of an action, In reality we know players are not coordinate pairs, they are athletic human beings. When we
reduce Serge Ibaka to a simple x,y pait, we lose key information. In reality, Serge Ibaka is a 3-dimensional creature
with arms that stretch and legs that jump. While this is painfully obvious, even our most sophisticated player
tracking systems model NBA playess as discrete locations on a plane. This dramatic abstraction of reality introduces
infinite issues relating to uncertainty and error. Although we contend there is a vast amount of value in optical
tracking data, more reseatch is needed to evaluate uncertainty and reliability in these kinds of investigations.

Conclusion

This paper has sought two accomplish two main objectives: 1) demonstrate that the combination of spatial analyses,
visual analytics, and optical tracking data presents a potent new mechanism to understand defensive effectiveness in
the NBA, and 2) expose important challenges associated with measuring defensive performances in the NBA.
Despite some relevant limitations, we contend that our results suggest that interior defensive abilities vary
considerably across the league; simply stated, some players are mote effective interior defenders than others. In
terms of affecting shooting, we evaluated interior defense in 2 separate case studies. FEach study focused on
impottant aspects of interior defense, and as a result each study both answers and provokes important questions
about defenstve analytics. Although we acknowledge that neither study clearly identifies the best and worst interior
defenders, we also contend that 1) each study effectively reveals important characteristics of good defensive play,
and 2) advancing defensive analytics will be an long-term iterative process that will require several investigations and
multiple new approaches. Lastly, due to his outstanding performance in both case studies, we conclude by
suggesting Larey Sanders is the best interior defender in the NBA.
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Appendix 1: Expanded Results from Case Study 1: Basket Proximity Shots
faced when defender was within 5 feet of basket.

% 3-
Shots % Close % Mid- peint  Close Mid  3-point
Rank  Defender Faced Range range range  FG% TG% FG%
1 Roy Hibbert 419 54.4 29.6 14.8 38.2 37.9 30.7
2 Larry Sanders 622 61.9 22.2 15.4 384 32.6 30.2
3 FElton Brand 198 571 26.8 141 39.8 321 46.4
4  Serge Ibaka 104 74.0 16.3 9.6 41.6 35.3 10.0
5  LaMarcus Aldridge 221 58.8 24.9 14.5 43.9 38.2 46.9
6 Jermaine O'Neal 392 56.9 28.1 14.0 44.0 327 32.7
7 Kosta Koufos 200 60.0 235 15.5 45.0 31.9 25.8
8  Kendrick Perking 745 59.3 24.3 16.1 45.5 37.0 367
9 Joakim Nozh 334 56.6 27.8 14.4 45.5 44.1 31.3
10  Dwight Howard 409 48.2 32.0 19.1 45.7 38.2 43.6
11 JaVale McGee 4m 53.6 30.2 16.0 46.1 40.5 40.6
12 Amir Johnson 207 56.5 251 174 46.2 44.2 41.7
13 Ekpe Udoh 468 65.2 20.1 14.1 46.2 42.6 34.9
14 Andris Biedring 317 49.8 28.7 20.5 46.8 429 36.9
15 Tim Duncan 930 57.3 28.6 13.7 471 41.4 46.5
16  Emcka Okafor 310 523 24.5 22.6 475 43.4 329
17 Jeremy Tyler 177 60.5 29.4 10.2 47.7 38.5 50.0
18 Nick Collison 273 52.0 27.8 18.7 479 35,5 37.3
19 Kevin Scraphin 475 55.6 28.4 14.9 48.1 40.7 35.2
20  DeMarcus Cousins 279 48.4 29.7 20.1 48.2 38.6 44.6
21 Marcus Camby 204 57.8 28.4 13.7 48.3 41.4 39.3
22 Kevin Garett 772 54.4 28.6 16.2 48.3 37.6 41.6
23 Tiago Splitter 687 58.8 272 13.5 48.5 38.0 355
24 Samuel Dalembert 77 56.4 30.4 12.9 48.6 38.6 41.0
25  Nene Hilaro 212 56.1 259 17.9 48.7 36.4 29.0
26 Aaron Gray 275 54.5 29.5 15.6 49.3 39.5 44.2
27 Td Davis 391 61.6 23.3 14.8 49.4 40.7 34.5
28  Nazr Mohammed 260 51.9 28.1 18.8 49.6 411 28,6
29 Chns Bosh 263 559 23.2 19.8 497 328 40.4
30  Marcin Gortat 679 60.2 27.0 12.5 50.4 42.6 Frd
31 Al Jefferson 340 52,9 29.7 16.8 50.6 38.6 333
32 Jonas Valanciunas 239 59.4 26.8 13.4 50.7 43.8 375
33 Omer Asik 578 58.8 25.8 14.0 51.2 39.6 29.6
34  Greg Stiemnsma 407 56.0 31.2 12,5 513 41.7 333
35  Tyson Chandler 794 57.6 25.6 16.5 51.4 40.4 344
36 Nikola Vucevic 421 644 24.0 11.6 51.7 37.6 26.5
37  Marc Gasol 344 52.6 26.5 19.5 5159 33.0 328
38  Spencer Hawes 185 61.1 29.7 8.6 52.2 32.7 25.0
39  Nikola Pekovic 669 555 27.5 16.9 52.6 40.2 281
40 Greg Smith 207 065.2 26.1 B2 52.6 35.2 35.3
41 Tristan Thompson 174 67.2 18.4 14.4 530  56.3 32.0
42 Chris Wilcox 217 65.9 21.2 12.4 53.2 45.7 40.7
43 Robin Lopez 201 61.2 224 14.9 53.7 31.1 333
44 Jordan Hill 195 60.5 17.9 20.5 54.2 51.4 27.5
45 Tyler Zeller 298 534 30.5 16.1 54.7 40.7 33.3
46 Chris Kaman 445 51.2 25.6 22.5 54.8 421 42.0
47 Drew Gooden 562 61.6 233 14.9 54.9 37.4 30.9
48  Anderson Varejao 224 56.7 232 19.2 55.9 42.3 372
49 Kevin Love 357 55.2 24.6 20.2 57.9 36.4 31.9
50 Greg Monroe 302 57.0 25.2 175 58.7 55.3 35.9
51  David Lee 400 60.3 23.3 153 61.0 333 29.5
52 Luis Scola 199 62.8 22.6 14.6 62.4 289 27.6
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Appendix 1A: Same data as Appendix 1, but sorted according to % of shots
occurting close to the basket

) Shots % Close % Mid- % 3-point Close Mid 3-point
Rank Defender FFaced Range range Emgc FG% FG% {:'G%
1 Dwight Howard 409 48.2 32 191 45,7 38.2 43.6
2 DeMarcus Cousins 279 43.4 297 20.1 48.2 38.6 44.6
3 Andrs Biedrins 317 49.8 287 0.5 46.8 42.9 36.9
4 Chris Kaman 445 51.2 25.6 225 54.8 42,1 42
5  Nazr Mohammed 260 51.9 28.1 18.8 49.6 41.1 28.6
6 Nick Collison 273 52 218 18.7 47.9 35.5 37.3
7  Emeka Okafor 310 52.3 245 22.6 475 43.4 329
8  Marc Gasol 344 52.6 265 19.5 51.9 33 32.8
9 Al Jefferson 340 529 259 16.8 50.6 38.6 333
10 Tyler Zeller 298 53.4 30.5 16.1 54.7 40.7 33.3
11 JaVale McGee 401 53.6 30.2 16 46.1 40.5 40.6
12 Roy Hibbert 419 54.4 29.6 14.8 38.2 37.9 30.7
13 Kevin Garnett 772 54.4 28.6 16.2 48.3 37.6 41.6
14 Aaron Gray 275 54.5 29.5 15.6 493 39.5 442
15  Kevin Love 357 55.2 24.6 20.2 57.9 36.4 31.9
16 Nikola Pekovic 669 55.5 275 16.9 52.6 46.2 38.1
17 Kevin Seraphin 475 55.6 28.4 14.9 48.1 40.7 35.2
18  Chris Bosh 263 55.9 23.2 19.8 49.7 32.8 40.4
19 Greg Stemsma 407 56 31.2 12.5 51.3 41.7 333
20 Nene Hilario 212 56.1 25.9 17.9 48.7 36.4 29
21 Samuel Dalembert 711 56.4 30.4 12.9 48.6 38.6 41
22 Amir Johnson 207 56.5 251 17.4 46.2 44.2 41.7
23 Joakim Noah 334 56.6 27.8 14.4 45.5 44.1 31.3
24  Anderson Varejao 224 56.7 23.2 19.2 55.9 423 3712
25  Jermainc O'Neal 392 56.9 28.1 14 44 327 327
26 Greg Monroe 302 57 25.2 17.5 58.7 55.3 35.9
27  FElron Brand 198 57.1 26.8 14.1 39.8 32.1 46.4
28 Tim Duncan 930 57.3 28.6 137 471 41.4 46.5
29  Tyson Chandler 794 57.6 25.6 16.5 51.4 40.4 34.4
30  Marcus Camby 204 57.8 284 13.7 48.3 41.4 39.3
31 TaMarcus Aldridge 221 58.8 24.9 14.5 43.9 38.2 46.9
32 Tiago Splitter 687 58.8 212 13.5 48.5 38 5355
33 Omer Asik 578 58.8 25.8 14 51.2 39.6 29.6
34  Kendrick Perking 745 59.3 24.3 16.1 45.5 37 36.7
35  Jonas Valancmunas 239 59.4 26.8 13.4 50.7 43.8 375
36 Kosta Koufos 200 60 23.5 15.5 45 31.9 25.8
37 Marcin Gortat 679 60.2 27 12.5 50.4 42.6 37.7
38 David Lee 400 60.3 23.3 15.3 61 33.3 29.5
39 Jeremy Tyler 177 60.5 29.4 10.2 417 385 50
40 Jordan Hill 195 60.5 17.9 20.5 54.2 51.4 27.5
41 Spencer Hawes 185 61.1 29.7 8.6 52.2 82 25
42 Robin Lopez 201 61.2 224 14.9 53.7 311 33.3
43 Ed Davis 391 61.6 233 14.8 49.4 40.7 34.5
44 Drew Gooden 562 61.6 233 14.9 54.9 37.4 36.9
45  Larry Sanders 622 61.9 222 15.4 384 32.6 30.2
46 Luis Scola 199 62.8 22,6 14.6 62.4 28.9 27.6
47 Nikola Vucevic 421 644 24 11.6 51.7 37.6 26.5
48  Tikpe Udoh 468 65.2 201 141 46.2 42.6 34.9
49 Greg Smith 207 65.2 26.1 8.2 52,6 35.2 35.3
50  Chris Wilcox 217 65.9 212 124 53.2 45.7 40.7
51  Tristan Thompson 174 67.2 184 14.4 53 56.3 32
52 Serge Ibaka 104 74 16.3 9.6 41.6 35.3 10
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Appendix 2: Expanded Results from Case Study 2: Shot Defended: Shots

faced when defender was close to shootet.
A) Shots defended: The results are presented as:
(%o of shots where defenders was within 1 foot) / (Yo within 3-feet) / (% within 5-feet)

5-ft Rank Defender Shots Faced Within 1ft Within 3ft Within 5ft
1 Josh Harrellson 206 1.5 223 35.9
2 IKosta Koufos 447 3.8 213 35.6
3 Jordan Hill 519 1.9 22.4 351
4 Serge Ibaka 223 1.8 21.1 34.5
5  Chris Wilcox 616 1.6 17:8 34.4
6 Greg Smith 613 1.6 16.6 34.3
7 Jermaine O'Neal 925 1.6 17.6 34.1
§  Cole Aldrich 364 0.8 14.0 33.8
9  Greg Stiemsma 910 1.9 18.6 33.7
10 Jonas Valanciunas 536 2.1 18.1 33.6
11 Ekpe Udoh 1321 2.0 17.6 32.6
12 Larry Sanders 1482 2.4 17.3 325
13 Spencer Hawes 553 1.4 16.3 322
14 Jason Collins 207 1.9 16.9 31.9
15 Jeremy Tyler 502 2.4 181 31.7
16 Marcin Gortat 1745 1.7 17.3 31.4
17  Tlton Brand 547 1.3 17.0 313
18 Gustave Ayon 437 0.9 16.5 31.1
19  Robin Lopez 540 0.7 16.9 31.1
20  Tim Duncan 2353 1.4 17.5 31.1
21  Kevin Love 922 1.8 15.2 31.0
22 Amir Johnson 488 2.9 17.4 30.5
23 Drew Gooden 1513 12 13.4 30.3
24 Tiago Splitter 2022 1.6 15.4 301
25  Anthony Randolph 284 0.4 15.5 29.9
26 Andray Blatche 389 1.5 14.4 29.8
27 Jon Leuer 239 1.3 155 29.7
28 Lavoy Allen 239 1.7 17.6 29.7
29  Amar'e Stoudemire 253 2.8 13.0 29.6
30 Chus Kaman 1095 2.5 174 29.5
31 Kurt Thomas 235 2.1 13.2 29.4
32 Nikola Vucevic 1352 1.7 14.1 29.0
33 I'yson Chandler 2186 13 15.7 29.0
34 Kevin Garnett 2067 0.8 13.0 28.7
35  Andrew Bogut 248 1.2 13.3 28.6
36 Roy Hibbert 1094 1.9 16.5 28.6
37 Jason Smith 221 1.8 15.4 28.5
38  Brandan Wright 435 0.9 13.8 28.5
39  Andris Biedrins 783 1.9 15.2 28.4
40 Al Jefferson 947 1.6 14.3 283
41 Ian Mahinmi 532 2.1 16.4 28.2
42 Ed Davis 1171 1.2 14.6 28.2
43 Tyler Zeller 741 1.1 13.5 279
44 Samuel Dalembert 1765 1.9 152 27.8
45  Anderson Yarcjao 603 0.7 12.9 275
46 Kevin Seraphin 1141 1.5 16.7 27.5
47 Tristan Thompson 611 1.3 14.1 271.5
48  Darko Milicic 420 1.0 15.8 27.4
49 Patrick Patterson 280 1.8 13.9 27.1
50  MWick Collison 854 1.4 12.6 27.0
51 Jared Jeffries 281 1.1 13.5 27.0
52 Brook Lopez 337 2.4 12.8 27.0
53  Omer Asik 1571 1.5 51 27.0
54 Joakim Noah 1017 1.3 13.0 26.8
55  Andre Drummond 210 1.4 10.5 26.7
56 T.uis Scola 629 1.3 13.8 26.6
57  David Lee 1269 1.2 11.3 26.5
58 Kwame Brown 242 0.8 12.8 26.4
59  TPau Gasol 227 0.0 0.0 26.4
60 Jamaal Magloire 228 2.6 16.2 26.3
61 Jason Thompson 289 1.4 11.1 26.3
62  Chris Bosh 810 0.6 10.5 26.0
63  Kendrick Perkins 2605 1.3 12.6 25.9
64  Ryan Hollins 337 1.5 11.9 25.5
65  Marc Gasol 1071 1.5 13.7 25.5
66 Nazr Mohammed 699 1.3 13.2 25.5
67  Hasheem Thabeet 444 0.9 11.7 255
68  Byron Mullens 442 0.5 13.3 25.3
69 Testus Ezeli 487 1.4 12.9 25.3
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70 Marcus Camby 674 0.4 111 25.2
71 Nene Hilario 598 2.2 11.2 25.1
72 Aaron Gray 836 0.8 11.4 25.0
73 Emeka Qkafor 818 1.2 13.3 24.9
74 Greg Monroe 853 2.2 11.5 24.7 -
75  Meyers Leonard 211 0.9 123 24.6
76 Zaza Pachulia 492 1.8 13.6 24.6
77 Ryan Anderson 387 0.8 11.6 24.5
78  DeMarcus Cousins 802 1.5 11.5 24.4
79 DeAndre Jordan 566 0.5 10.6 24.4
80 DeJuan Blair 353 0.8 9.1 24.4
81  JaVale McGee 928 1.6 11.7 24.4
82  Nikola Pekovic 1980 1.0 13.4 24.0
83 Dwight Howard 1071 1.2 10.0 23.6
84 Al Horford 269 1.9 10.8 23.0
85 TaMarcus Aldridge 732 0.7 10.9 23.0
86  Tines Kanter 318 2.8 12.3 22.6
87  Boris Diaw 285 1.1 i 22,5
88  Andrew Bynum 614 0.5 9.8 223
89  Blake Guiffin 256 0.8 9.0 21.9
90 Andrca Bargnani 727 1.0 9.8 219
91  Brandon Bass 2N 1.1 11.8 21.8
92 Brendan Haywood 404 1.0 10.4 21.0
93 'I'yler Hansbrough 381 1.3 9.2 20.7
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B) Prox?;él FG%: The results summarize the FG% of opponents when
each defender was within 5 feet.

Rank Defender FG%
1 Larry Sanders 34.9%
2 Andrea Bargnani 35.2%
3  Kendrick Perkins 37.3%
4 Elton Brand 38.0%
5 Roy Hibbert 38.7%
6 IKosta Koufos 39.0%
7 Nene [Hilario 40.0%
8  Andris Biedrins 41.0%
9 Greg Stiemsma 41.7%

10 Jermaine O'Neal 42.2%
11 JaVale McGee 42.5%
12 Nazr Mohammed 43.3%
13 Tan Mahinmi 43.3%
14  Tim Duncan 43.4%
15 Dwight Howard 43.5%
16 Marc Gasol 43.6%
17 Kevin Seraphin 43.6%
18 Jeremy Tyler 44.0%
19 LaMarcus Aldridge 44.1%
20 Aaron Gray 44.5%
21 Kevin Garnett 44.9%
22 DeMarcus Cousing 44.9%
23 Marcus Camby 45.3%
24 Ekpe Udoh 45.4%
25  Nick Collison 45.5%
26 Chris Bosh 45.5%
27 Tiago Splitter 45.6%
28  Tyson Chandler 45.7%
29 Samuel Dalembert 45.7%
30 Joakim Noah 45.8%
31 Omer Asik 46.0%
32  Timeka Okafor 406.6%
33 Tyler Zeller 46.9%
34 Chrs Wilcox 47.2%
35  Marcin Gortat 47.5%
36 Spencer Hawes 47.8%
37  Nikola Pekovic 48.0%
38 Al Jefferson 48.5%
39  IEd Davis 48.8%
40  Nikola Vucevic 49.0%
41 Greg Smith 49.1%
42 Robin Lopez 49.4%
43 Chris Kaman 49.5%
44 Greg Monroe 50.2%
45 Tristan Thompson 50.6%
46 Tuis Scola 51.5%
47 Drew Gooden 51.8%
48  Kevin Love 52.1%
49 Jonas Valanciunas 52.8%
50 David Lec 53.0%
51  Jordan Hill 53.9%
52 Anderson Varejao 54.2%
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